Gray, Steven.

Environmental Modeling with Stakeholders : Theory, Methods, and Applications. - 1 online resource (377 pages) - eBooks on Demand .

Dedication -- Foreword -- Preface -- Structure of the Book -- Book Chapters -- Concluding Remarks -- Contents -- Contributors -- Part I: The Process of Environmental Modeling with Stakeholders -- Chapter 1: Cognitive, Material and Technological Considerations in Participatory Environmental Modeling -- 1.1 Introduction -- 1.2 Cognitive Environmental Knowledge and Values -- 1.3 Material and Technological Dynamics -- 1.3.1 The Conceptual Limitations of Models -- 1.3.2 The Materiality of Computational Modeling -- 1.3.3 Code Structures -- 1.3.4 Broader Socio-Ecological Systems -- 1.4 Conclusion: Insights from the Chesapeake Bay -- References -- Chapter 2: Learning Through Participatory Modeling: Reflections on What It Means and How It Is Measured -- 2.1 Introduction -- 2.2 Our Approach to Participatory Modeling and Efforts to Assess Participant Learning -- 2.2.1 The VCAPS Process -- 2.2.2 Challenges to Assessing Participant Learning in VCAPS -- 2.3 Characterizing Learning in Participatory Modeling Activities -- 2.3.1 A Socio-Cultural Approach to Learning -- 2.3.2 A Developmental Approach to Assessing Learning -- 2.4 Designing Participatory Modeling Processes to Promote Learning -- 2.4.1 Cultural Tools That Participants Can Learn by Engagement in Participatory Modeling -- 2.4.2 Process Designers Can Promote Interactions and Activities to Promote Learning of Cultural Tools -- 2.4.3 Process Designers Can Select Participants and Define Roles to Promote Learning of Cultural Tools -- 2.4.4 Process Designers Can Selectively Use Cultural Tools to Promote Learning -- 2.5 Conclusion -- References -- Chapter 3: Values in Participatory Modeling: Theory and Practice -- 3.1 Introduction -- 3.2 Philosophy of Participatory Modeling: Integrating Values, Not Just Knowledge -- 3.3 Revisiting Best Practices of Participatory Modeling. 3.4 An Example: Can Optimization Help with Value-Setting? -- 3.5 Conclusions -- References -- Chapter 4: Eliciting Judgments, Priorities, and Values Using Structured Survey Methods -- 4.1 Introduction -- 4.2 Survey Respondents -- 4.3 Survey Design and Deployment -- 4.4 Elicitation Approaches -- 4.5 Applications in Environmental Science and Decision Making -- 4.5.1 Characterizing the Significance of Adverse Events Across a Large-Scale Hydropower System in British Columbia, Canada -- 4.5.2 Selecting Regulatory Options for Managing Incidental Take of Migratory Birds from Human Development Across Canada -- 4.5.3 Understanding Boater Perceptions of Environmental Issues Affecting Lakes in Northern Wisconsin, USA -- 4.6 Final Thoughts -- References -- Chapter 5: Participatory Modeling and Structured Decision Making -- 5.1 Introduction -- 5.1.1 Collaborative Decision Making: A Participatory Process -- 5.2 The Structured Decision Making Framework -- 5.2.1 Problem -- 5.2.2 Objectives -- 5.2.3 Alternatives -- 5.2.4 Consequences -- 5.2.4.1 Influence Diagrams -- 5.2.4.2 Decision Trees -- 5.2.4.3 Bayesian Belief Networks -- 5.2.4.4 Empirical Models -- 5.2.4.5 Expert Elicitation -- 5.2.4.6 Consequence Tables -- 5.2.5 Tradeoffs -- 5.2.6 Implementing the Decision -- 5.3 Conclusions -- References -- Chapter 6: Ensuring that Ecological Science Contributes to Natural Resource Management Using a Delphi-Derived Approach -- 6.1 Introduction -- 6.2 Resource Management and Environmental Research at Fort Benning -- 6.3 Participatory Methods for Addressing Integration Goals -- 6.4 Participatory Approaches and Their Outcomes -- 6.4.1 Preliminary Consultation with Land Managers: Developing an Initial Land-Use Framework -- 6.4.2 Round 1 with SEMP Researchers: Raising Challenging Issues -- 6.4.3 Round 2: Refining the Integration Matrix. 6.4.4 Round 3 and the Face-to-Face Elicitation: The "Final" Integration Matrix Emerges -- 6.4.5 Mapping the Land Management Goals Based on the Integration Matrix -- 6.5 Discussion -- References -- Part II: The Application and Products of Environmental Modeling with Stakeholders -- Chapter 7: Fuzzy-Logic Cognitive Mapping: Introduction and Overview of the Method -- 7.1 Introduction -- 7.2 Description -- 7.3 Evolution of FCM -- 7.4 Fuzzy-Logic Cognitive Mapping in the Environmental-­Modeling Context -- 7.4.1 Facilitating Public Participation -- 7.4.2 Expert Knowledge to Deal with Data and Knowledge Limitations -- 7.4.3 Simulating Changes to the System and Decision Outcomes -- 7.4.4 Examples of FCM in Environmental Research -- 7.5 Limitations of Fuzzy-Logic Cognitive Mapping -- 7.6 Conclusion -- References -- Chapter 8: FCMs as a Common Base for Linking Participatory Products and Models -- 8.1 Introduction -- 8.1.1 Objectives -- 8.2 Background -- 8.2.1 SCENES -- 8.2.2 Fuzzy Cognitive Maps -- 8.2.3 WaterGAP Model -- 8.3 Methods -- 8.3.1 Development of Stakeholder-Based FCM -- 8.3.2 Development of a Model-Based FCM -- 8.3.3 Comparison of Both FCMs -- 8.3.3.1 System Configuration -- 8.3.3.2 Quasi-Dynamic System Behavior -- 8.4 Results -- 8.4.1 System Configuration -- 8.4.2 Quasi-Dynamic System Behavior -- 8.5 Discussion and Outlook -- 8.5.1 Development of FCM-SH, Based on Information from Three Case Studies -- 8.5.2 Development of FCM-WG, Based on a Mathematical Model -- 8.5.3 Comparing Both FCMs to Identify Crucial Differences and Similarities -- 8.5.4 Comparing FCMs and Mathematical Models -- 8.5.5 Recommendations to Better Match FCMs and Models to Bridge Between Qualitative and Quantitative Scenarios -- 8.6 Conclusions -- References. Chapter 9: Extending Participatory Fuzzy Cognitive Mapping with a Control Nodes Methodology: A Case Study of the Development of a Bio-based Economy in the Humber Region, UK -- 9.1 Introduction -- 9.1.1 Tools for Steering Complex Systems -- 9.1.2 The Humber Region Case Study -- 9.1.3 Participatory Modeling in Our Methodology -- 9.2 Methodology: Expanding Fuzzy Cognitive Mapping with Network Controllability Analysis -- 9.2.1 Fuzzy Cognitive Mapping -- 9.2.2 Interpretation of Fuzzy Cognitive Maps -- 9.2.3 Control Nodes Methodology -- 9.2.4 Incorporating Control Nodes into a Participatory FCM Workshop -- 9.3 Case Study: Applying Control Nodes Methodology to Stakeholder-Produced Fuzzy Cognitive Maps -- 9.3.1 Producing a Cognitive Map of the Humber Bio-Based Energy System -- 9.3.2 Humber Bio-Based Economy Control Nodes Workshop -- 9.3.3 Controllability Results -- 9.3.3.1 Factor Controllability as Perceived by Stakeholders -- 9.3.3.2 Control Configurations -- 9.3.3.3 Stakeholder Ranking of Control Configurations -- 9.4 Discussion -- 9.4.1 Stakeholder Response to the Process -- 9.4.2 Who Is the Appropriate Audience? -- 9.4.3 Methodological Limitations and Further Work -- 9.5 Conclusions -- References -- Chapter 10: Effects of Livelihood-Diversification on Sustainability of Natural Resources in the Rangelands of East Africa: Participatory Field Studies and Results of an Agent-Based Model Using the Knowledge of Indigenous Maasai Pastoralists of Kenya -- 10.1 Introduction -- 10.2 Research Approach and Methods -- 10.3 Structure and Operation of Maasai-Pastoralism and Resources Management -- 10.4 Maasai Knowledge, Values, and Preferences in Natural Resource Management -- 10.5 Livelihood-Diversification and Sustainability of Natural Resources in Indigenous Maasai-Pastoralism. 10.6 Scenarios for Change: Livelihood-Diversification and Scalar Environmental, Socioeconomic, and Climatic Changes -- 10.7 Conclusions and Emerging Themes -- References -- Chapter 11: Level of Sustainable Activity: A Framework for Integrating Stakeholders into the Simulation Modeling and Management of Mixed-Use Waterways -- 11.1 Introduction -- 11.2 Background: Carrying Capacity for Water-Based Recreation -- 11.2.1 WROS: Water Recreational Opportunity Spectrum -- 11.2.2 Level of Service: Capacity for Roadways -- 11.3 Level of Sustainable Activity (LSA) Framework for Waterways -- 11.4 The LSA Approach -- 11.4.1 Waterway Classification -- 11.4.2 Waterway Inventory -- 11.4.3 Selection of Stakeholder Groups -- 11.4.4 Define Issues -- 11.4.5 Pattern of Use Analysis -- 11.4.6 Forecast Use Trends -- 11.4.7 Establish LSA Classes -- 11.4.8 Define Level of Sustainable Activity for Each Stakeholder Group and Each Management Zone -- 11.4.9 Define Management Options -- 11.4.10 Develop a Vessel Traffic Management Plan -- 11.5 Case Study A: Vessel Traffic Management in an Urban Waterway -- 11.5.1 Waterway Classification -- 11.5.2 Marina/Transit Zone Inventory -- 11.5.3 Selection of Stakeholder Groups -- 11.5.4 Define Issues -- 11.5.5 Pattern of Use Analysis -- 11.5.6 Forecast Use Trends -- 11.5.7 Establish LSA Classes -- 11.5.8 Marina/Transit Zone Level of Sustainable Activity -- 11.5.9 Results of LSA Workshop -- 11.5.9.1 Quality of Experience -- 11.5.10 Implications of LSA Results in Relation to Simulation Outputs -- 11.5.11 Summary and Conclusions -- 11.6 Prince William Sound: LSA in a Wilderness Waterway -- 11.6.1 Waterway Classification and Inventory: Selecting Representative Bays -- 11.6.2 Selection of Stakeholder Groups -- 11.6.3 Define Issues -- 11.6.3.1 Results of the Survey -- 11.6.4 Establish LSA Classes. 11.6.5 Define Level of Sustainable Activity for Each Stakeholder Group for Each of Three Bays.

9783319250533


Environmental management.


Electronic books.

GE1-350

363.70068