Applied Biclustering Methods for Big and High-Dimensional Data Using R. (Record no. 1010061)

001 - CONTROL NUMBER
control field EBC4709823
006 - FIXED-LENGTH DATA ELEMENTS--ADDITIONAL MATERIAL CHARACTERISTICS
additional material characteristics m o d |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr cnu||||||||
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 170919s2016 xx o ||||0 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9781482208245
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
Cancelled/invalid ISBN 9781482208238
035 ## - SYSTEM CONTROL NUMBER
System control number (MiAaPQ)EBC4709823
035 ## - SYSTEM CONTROL NUMBER
System control number (Au-PeEL)EBL4709823
035 ## - SYSTEM CONTROL NUMBER
System control number (CaPaEBR)ebr11276011
035 ## - SYSTEM CONTROL NUMBER
System control number (CaONFJC)MIL967838
035 ## - SYSTEM CONTROL NUMBER
System control number (OCoLC)960210212
040 ## - CATALOGING SOURCE
Original cataloging agency MiAaPQ
Language of cataloging eng
Description conventions rda
-- pn
Transcribing agency MiAaPQ
Modifying agency MiAaPQ
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA76.9.B45.A67 2017
082 0# - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 5.7
090 ## - LOCALLY ASSIGNED LC-TYPE CALL NUMBER (OCLC); LOCAL CALL NUMBER (OCLC)
Classification number (OCLC) (R) ; Classification number, CALL (RLIN) (NR) QA76.9.B45.A67 2017
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Kasim, Adetayo.
245 10 - TITLE STATEMENT
Title Applied Biclustering Methods for Big and High-Dimensional Data Using R.
264 #1 -
-- Boca Raton :
-- CRC Press,
-- 2016.
264 #4 -
-- ©2016.
300 ## - PHYSICAL DESCRIPTION
Extent 1 online resource (428 pages)
336 ## - Content
Term text
Code txt
Content rdacontent
337 ## - Media
Term computer
Code c
Media rdamedia
338 ## - Carrier
Term online resource
Code cr
Carrier rdacarrier
490 0# - SERIES STATEMENT
Series statement eBooks on Demand
490 1# - SERIES STATEMENT
Series statement Chapman & Hall/CRC Biostatistics Series
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Contributors -- R Packages and Products -- 1. Introduction -- 1.1. From Clustering to Biclustering -- 1.2. We R a Community -- 1.3. Biclustering for Cloud Computing -- 1.4. Book Structure -- 1.5. Datasets -- 1.5.1. Dutch Breast Cancer Data -- 1.5.2. Diffuse Large B-Cell Lymphoma (DLBCL) -- 1.5.3. Multiple Tissue Types Data -- 1.5.4. CMap Dataset -- 1.5.5. NCI60 Panel -- 1.5.6. 1000 Genomes Project -- 1.5.7. Tourism Survey Data -- 1.5.8. Toxicogenomics Project -- 1.5.9. Yeast Data -- 1.5.10. mglu2 Project -- 1.5.11. TCGA Data -- 1.5.12. NBA Data -- 1.5.13. Colon Cancer Data -- 2. From Cluster Analysis to Biclustering -- 2.1. Cluster Analysis -- 2.1.1. An Introduction -- 2.1.2. Dissimilarity Measures and Similarity Measures -- 2.1.2.1. Example 1: Clustering Compounds in the CMAP DataBased on Chemical Similarity -- 2.1.2.2. Example 2 -- 2.1.3. Hierarchical Clustering -- 2.1.3.1. Example 1 -- 2.1.3.2. Example 2 -- 2.1.4. ABC Dissimilarity for High-Dimensional Data -- 2.2. Biclustering: A Graphical Tour -- 2.2.1. Global versus Local Patterns -- 2.2.2. Bicluster's Type -- 2.2.3. Bicluster's Configuration -- Part I: Biclustering Methods -- 3. δ-Biclustering and FLOC Algorithm -- 3.1. Introduction -- 3.2. δ-Biclustering -- 3.2.1. Single-Node Deletion Algorithm -- 3.2.2. Multiple-Node Deletion Algorithm -- 3.2.3. Node Addition Algorithm -- 3.2.4. Application to Yeast Data -- 3.3. FLOC -- 3.3.1. FLOC Phase I -- 3.3.2. FLOC Phase II -- 3.3.3. FLOC Application to Yeast Data -- 3.4. Discussion -- 4. The xMotif algorithm -- 4.1. Introduction -- 4.2. xMotif Algorithm -- 4.2.1. Setting -- 4.2.2. Search Algorithm -- 4.3. Biclustering with xMotif -- 4.3.1. Test Data -- 4.3.2. Discretisation and Parameter Settings -- 4.3.2.1. Discretisation -- 4.3.2.2. Parameters Setting.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 4.3.3. Using the biclust Package -- 4.4. Discussion -- 5. Bimax Algorithm -- 5.1. Introduction -- 5.2. Bimax Algorithm -- 5.2.1. Setting -- 5.2.2. Search Algorithm -- 5.3. Biclustering with Bimax -- 5.3.1. Test Data -- 5.3.2. Biclustering Using the Bimax Method -- 5.3.3. Influence of the Parameters Setting -- 5.4. Discussion -- 6. The Plaid Model -- 6.1. Plaid Model -- 6.1.1. Setting -- 6.1.2. Overlapping Biclusters -- 6.1.3. Estimation -- 6.1.4. Search Algorithm -- 6.2. Implementation in R -- 6.2.1. Constant Biclusters -- 6.2.2. Misclassification of the Mean Structure -- 6.3. Plaid Model in BiclustGUI -- 6.4. Mean Structure of a Bicluster -- 6.5. Discussion -- 7. Spectral Biclustering -- 7.1. Introduction -- 7.2. Normalisation -- 7.2.1. Independent Rescaling of Rows and Columns (IRRC) -- 7.2.2. Bistochastisation -- 7.2.3. Log Interactions -- 7.3. Spectral Biclustering -- 7.4. Spectral Biclustering Using the biclust Package -- 7.4.1. Application to DLBCL Dataset -- 7.4.2. Analysis of a Test Data -- 7.5. Discussion -- 8. FABIA -- 8.1. FABIA Model -- 8.1.1. The Idea -- 8.1.2. Model Formulation -- 8.1.3. Parameter Estimation -- 8.1.4. Bicluster Extraction -- 8.2. Implementation in R -- 8.3. Case Studies -- 8.3.1. Breast Cancer Data -- 8.3.2. Multiple Tissues Data -- 8.3.3. Diffuse Large B-Cell Lymphoma (DLBCL) Data -- 8.4. Discussion -- 9. Iterative Signature Algorithm -- 9.1. Introduction: Bicluster Definition -- 9.2. Iterative Signature Algorithm -- 9.3. Biclustering Using ISA -- 9.3.1. isa2 Package -- 9.3.2. Application to Breast Data -- 9.3.3. Application to the DLBCL Data -- 9.4. Discussion -- 10. Ensemble Methods and Robust Solutions -- 10.1. Introduction -- 10.2. Motivating Example (I) -- 10.3. Ensemble Method -- 10.3.1. Initialization Step -- 10.3.2. Combination Step -- 10.3.2.1. Similarity Indices -- 10.3.2.2. Correlation Approach.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 10.3.2.3. Hierarchical Clustering -- 10.3.2.4. Quality Clustering -- 10.3.3. Merging Step -- 10.4. Application of Ensemble Biclustering for the Breast Cancer Data Using superbiclust Package -- 10.4.1. Robust Analysis for the Plaid Model -- 10.4.2. Robust Analysis of ISA -- 10.4.3. FABIA: Overlap between Biclusters -- 10.4.4. Biclustering Analysis Combining Several Methods -- 10.5. Application of Ensemble Biclustering to the TCGA Data Using biclust Implementation -- 10.5.1. Motivating Example (II) -- 10.5.2. Correlation Approach -- 10.5.3. Jaccard Index Approach -- 10.5.4. Comparison between Jaccard Index and the CorrelationApproach -- 10.5.5. Implementation in R -- 10.6. Discussion -- Part II: Case Studies and Applications -- 11. Gene Expression Experiments in Drug Discovery -- 11.1. Introduction -- 11.2. Drug Discovery -- 11.2.1. Historic Context -- 11.2.2. Current Context -- 11.2.3. Collaborative Research -- 11.3. Data Properties -- 11.3.1. High-Dimensional Data -- 11.3.2. Complex and Heterogeneous Data -- 11.3.2.1. Patient Segmentation -- 11.3.2.2. Targeted Therapy -- 11.3.2.3. Compound Differentiation -- 11.4. Data Analysis: Exploration versus Confirmation -- 11.5. QSTAR Framework -- 11.5.1. Introduction -- 11.5.2. Typical Data Structure -- 11.5.3. Main Findings -- 11.6. Inferences and Interpretations -- 11.7. Conclusion -- 12. Biclustering Methods in Chemoinformatics and Molecular Modelling in Drug Discovery Experiments: Connecting Gene Expression and Target Prediction Data -- 12.1. Introduction -- 12.1.1. Connecting Target Prediction and Gene Expression Data to Explain the Mechanism of Action -- 12.2. Data -- 12.2.1. CMap Gene Expression Data -- 12.2.2 Target Prediction Data -- 12.3. Integrative Data Analysis Steps -- 12.3.1. Clustering of Compounds -- 12.3.2. Feature Selection -- 12.3.3. Pathway Analysis -- 12.4. Biclustering with FABIA.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 12.5. Data Analysis Using the R Package IntClust -- 12.5.1. Step 1: Calculation of Similarity Scores -- 12.5.2. Step 2: Target Prediction-Based Clustering -- 12.5.3. Step 3: Feature Selection -- 12.5.4. Biclustering Using fabia() -- 12.6. Discussion -- 13. Integrative Analysis of miRNA and mRNA Data -- 13.1. Data Preprocessing -- 13.2. Joint Biclustering of miRNA and mRNA Data -- 13.3. Application to NCI-60 Panel Data -- 13.3.1. FABIA miRNA-mRNA Biclustering Solution -- 13.3.2. Further Description of miRNA-mRNA Biclusters -- 13.4. Discussion -- 14. Enrichment of Gene Expression Modules Using Multiple Factor Analysis and Biclustering -- 14.1. Introduction -- 14.2. Data Setting -- 14.3. Gene Module -- 14.3.1. Examples of Gene Module -- 14.3.2. Gene Module Summarization -- 14.3.3. Enrichment of Gene Module -- 14.4. Multiple Factor Analysis -- 14.4.1. Normalization Step -- 14.4.2. Simultaneous Analysis Step -- 14.5. Biclustering and Multiple Factor Analysis to Find Gene Modules -- 14.6. Implementation in R -- 14.6.1. MFA -- 14.6.2. Biclustering Using FABIA -- 14.7. Discussion -- 15. Ranking of Biclusters in Drug Discovery Experiments -- 15.1. Introduction -- 15.2. Information Content of Biclusters -- 15.2.1. Theoretical Background -- 15.2.2. Application to Drug Discovery Data Using the biclustRank R Package -- 15.3. Ranking of Biclusters Based on Their Chemical Structures -- 15.3.1. Incorporating Information about Chemical StructuresSimilarity -- 15.3.2. Similarity Scores Plot -- 15.3.2.1. Heatmap of Similarity Scores -- 15.3.3. Profiles Plot of Genes and Heatmap of Chemical Structures for a Given Bicluster -- 15.3.4. Loadings and Scores -- 15.4. Discussion -- 16. HapFABIA: Biclustering for Detecting Identity by Descent -- 16.1. Introduction -- 16.2. Identity by Descent -- 16.3. IBD Detection by Biclustering -- 16.4. Implementation in R.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 16.4.1. Adaptation of FABIA for IBD Detection -- 16.4.2. HapFabia Package -- 16.5. Case Study I: A Small DNA Region in 61 ASW Africans -- 16.6. Case Study II: The 1000 Genomes Project -- 16.6.1. IBD Sharing between Human Populations and Phasing Errors -- 16.6.2. Neandertal and Denisova Matching IBD Segments -- 16.7. Discussion -- 17. Overcoming Data Dimensionality Problems in Market Segmentation -- 17.1. Introduction -- 17.1.1. Biclustering on Marketing Data -- 17.2. When to Use Biclustering -- 17.2.1. Automatic Variable Selection -- 17.2.2. Reproducibility -- 17.2.3. Identification of Market Niches -- 17.3. Binary Data -- 17.3.1. Analysis of the Tourism Survey Data -- 17.3.2. Results -- 17.3.3. Comparisons with Popular Segmentation Algorithms -- 17.3.3.1. Bootstrap Samples -- 17.3.3.2. Artificial Data -- 17.4. Analysis of the Tourism Survey Data Using the BCrepBimax() Method -- 17.5. Discussion -- 18. Pattern Discovery in High-Dimensional Problems Using Biclustering Methods for Binary Data -- 18.1. Introduction -- 18.2. Identification of in vitro and in vivo DisconnectsUsing Transcriptomics Data -- 18.2.1. Background -- 18.2.2. Dataset -- 18.3. Disconnects Analysis Using Fractional Polynomials -- 18.3.1. Significant Effect in vitro -- 18.3.2. Disconnect between in vitro and in vivo -- 18.4. Biclustering of Genes and Compounds -- 18.5. Bimax Biclustering for the TGP Data -- 18.6. iBBiG Biclustering of the TGP Data -- 18.7. Discussion -- 19. Identification of Local Patterns in the NBA Performance Indicators -- 19.1. Introduction -- 19.2. NBA Sortable Team Stats -- 19.3. Analysis of the Traditional Performance Indicators: Construction of a Performance Module -- 19.3.1. Traditional Performance Indicators -- 19.3.2. Hierarchical Clustering and Principal Component Analysis -- 19.4. Analysis of Performance Indicators Using Multiple Factor Analysis.
505 8# - FORMATTED CONTENTS NOTE
Formatted contents note 19.4.1. Data Structure and Notations.
588 ## -
-- Description based on publisher supplied metadata and other sources.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Big data.
655 #4 - INDEX TERM--GENRE/FORM
Genre/form data or focus term Electronic books.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Shkedy, Ziv.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Kaiser, Sebastian.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Hochreiter, Sepp.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Talloen, Willem.
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Print version:
Main entry heading Kasim, Adetayo
Title Applied Biclustering Methods for Big and High-Dimensional Data Using R
Place, publisher, and date of publication Boca Raton : CRC Press,c2016
International Standard Book Number 9781482208238
797 2# - LOCAL ADDED ENTRY--CORPORATE NAME (RLIN)
Corporate name or jurisdiction name as entry element ProQuest (Firm)
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Chapman & Hall/CRC Biostatistics Series
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier <a href="http://ebookcentral.proquest.com/lib/uttyler/detail.action?docID=4709823">http://ebookcentral.proquest.com/lib/uttyler/detail.action?docID=4709823</a>
Link text Click here to view this ebook.
901 ## - LOCAL DATA ELEMENT A, LDA (RLIN)
Platform EBC
901 ## - LOCAL DATA ELEMENT A, LDA (RLIN)
Platform EBL
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Electronic Book
Source of classification or shelving scheme
Holdings
Withdrawn status Lost item Source of classification or shelving scheme Damaged status Not for loan Permanent Location Current Location Shelving location Date acquired Full call number Barcode Date last seen Uniform Resource Identifier Price effective from Koha item type
          UT Tyler Online UT Tyler Online Online 2017-09-20 QA76.9.B45.A67 2017 EBC4709823 2017-09-20 http://ebookcentral.proquest.com/lib/uttyler/detail.action?docID=4709823 2017-09-20 Electronic Book