Normal view MARC view ISBD view

Design and Construction of Phosphorus Removal Structures for Improving Water Quality.

By: Penn, Chad J.
Contributor(s): Bowen, James M.
Material type: TextTextSeries: eBooks on Demand.Publisher: Cham : Springer International Publishing, 2017Copyright date: ©2018Description: 1 online resource (241 pages).Content type: text Media type: computer Carrier type: online resourceISBN: 9783319586588.Subject(s): Environmental managementGenre/Form: Electronic books.Additional physical formats: Print version:: Design and Construction of Phosphorus Removal Structures for Improving Water QualityDDC classification: 363.61 Online resources: Click here to view this ebook.
Contents:
Dedication -- Preface -- Acknowledgements -- Contents -- Terms and Abbreviations -- Chapter 1: Introduction to Phosphorus and Water Quality -- 1.1 The Role of Phosphorus in Ecosystems -- 1.1.1 Eutrophication -- 1.1.2 Cultural and Political Response to Eutrophication Issues -- 1.2 Sources of Phosphorus Transported to Surface Waters -- 1.2.1 Point Sources (Wastewater Treatment Plants) -- 1.2.1.1 Phosphorus in Soaps -- 1.2.1.2 Wastewater Treatment Processes -- 1.2.2 Non-point Phosphorus Sources and Forms -- 1.2.2.1 Urban Grassed Areas -- 1.2.2.2 Agricultural Areas -- 1.3 Best Management Practices and Dissolved Phosphorus Losses -- References -- Chapter 2: Reducing Phosphorus Transport: An Overview of Best Management Practices -- 2.1 Dealing with Eutrophication: Treat the Symptoms or the Cause? -- 2.2 Incidental vs. Legacy Phosphorus Losses -- 2.3 Legacy Phosphorus -- 2.3.1 Preventing Legacy P from Occurring -- 2.3.1.1 Nutrient Management Planning -- 2.3.1.2 Manipulation of Animal Diet -- 2.3.1.3 Manure Export -- 2.3.2 Containment of Legacy Phosphorus Losses -- 2.3.2.1 Tillage Practices -- 2.3.2.2 Soil and Manure Amendments -- 2.3.2.3 Soil and Water Transport Reduction -- 2.3.3 Remediation of Legacy Phosphorus -- 2.3.3.1 Eliminating the Source: Phosphorus Drawdown (Phyto-remediation) -- 2.3.3.2 Phosphorus Removal Structures: Immediately Responsive P Reductions -- References -- Chapter 3: Phosphorus Removal Structures as a Short-­Term Solution for the Problem of Dissolved Phosphorus Transport to Surface Waters -- 3.1 Purpose, Concept, and General Theory of Phosphorus Removal Structures -- 3.1.1 How the Phosphorus Removal Structure Works for Removing the Target Pollutant: Dissolved Phosphorus -- 3.1.1.1 Essential Components of a Phosphorus Removal Structure -- 3.1.1.2 Site Requirements for a Phosphorus Removal Structure.
3.1.2 Choosing the Most Efficient Target Locations for a Phosphorus Removal Structure -- 3.1.2.1 Example of Choosing the Most Efficient Location for Constructing a Phosphorus Removal Structure -- 3.2 Examples and Applications of Phosphorus Removal Structures -- 3.2.1 Modular Box -- 3.2.2 Ditch-Filter -- 3.2.3 Surface Confined Bed -- 3.2.4 Cartridges -- 3.2.5 Pond Filter -- 3.2.6 Blind/Surface Inlets -- 3.2.7 Bio-Retention Cell -- 3.2.8 Subsurface Tile Drain Filter -- 3.2.9 Waste-Water Treatment Structures -- 3.2.10 Treatment at Confined Animal Feeding Operations -- 3.2.11 Treatment at Silage Bunkers -- 3.3 Summary of P Removal Structure Styles -- References -- Chapter 4: Phosphorus Sorption Materials (PSMs): The Heart of the Phosphorus Removal Structure -- 4.1 What Are PSMs? -- 4.1.1 Examples of PSMs -- 4.1.2 Choosing a PSM -- 4.2 What Makes a Material an Effective PSM? -- 4.2.1 P Sorption Capacity and Kinetics of P Removal -- 4.2.1.1 P Sorption Mechanisms and Sensitivity to Retention Time -- Calcium-Based PSMs -- Iron and Aluminum-Based PSMs -- 4.2.2 Physical Properties Important to PSMs -- 4.2.3 Safety Considerations of PSMs -- 4.2.3.1 Heavy Metals -- 4.2.3.2 pH and Alkalinity -- 4.3 The Paradox of Many PSMs -- 4.3.1 Potential Solutions for PSMs with Insufficient Hydraulic Conductivity -- 4.3.2 A Note on the Use of Steel Slag and Chemical Treatment -- References -- Chapter 5: Characterization of PSMs -- 5.1 Measuring and Estimating P Removal: Flow-Through vs. Batch Tests -- 5.2 The P Removal Design Curve -- 5.2.1 Method for Direct Measurement of the Design Curve: Flow-Through Experiment -- 5.2.2 Indirect Estimation of the P Design Curve Through Characterization of PSMs -- 5.2.2.1 pH Measurement -- 5.2.2.2 Measurement of Total Ca, Al, and Fe by Total Digestion -- 5.2.2.3 Measurement of Amorphous Al and Fe -- 5.2.2.4 Measurement of pH Buffer Index.
5.2.2.5 Measurement of Mean Particle Size -- 5.3 Methods of Physical Characterization of PSMs Necessary for Designing a P Removal Structure -- 5.3.1 Measurement of Bulk Density -- 5.3.2 Measurement of Porosity and Particle Density -- 5.3.3 Measurement of Saturated Hydraulic Conductivity -- 5.4 Methods of Safety Characterization of PSMs -- 5.4.1 Total Metal Concentration by Digestion -- 5.4.2 Method for Water Soluble Metals -- 5.4.3 Synthetic Precipitation Leaching Procedure (SPLP) -- References -- Chapter 6: Designing a Phosphorus Removal Structure -- 6.1 Designing Structures to Achieve Target P Load Removal and Lifetime -- 6.1.1 Use of the Design Curve and Governing Equations for Designing Structures -- 6.1.2 Determining the Required Mass of PSM for a P Removal Structure -- 6.2 Site Characterization Inputs Required for Conducting a Design -- 6.2.1 Average Annual Dissolved P Load -- 6.2.1.1 Average Annual Flow Volume -- 6.2.1.2 Average Dissolved P Concentration -- 6.2.1.3 Example Calculations of Annual P Load -- Example 1: Runoff Originating from Around CAFO Units -- Example 2: Runoff Originating from Several Suburban Housing Developments -- Example 3: Tile Drainage from an Agricultural Field -- 6.2.2 Peak Flow Rates -- 6.2.2.1 Surface Runoff -- 6.2.2.2 Subsurface Drain Pipes -- 6.2.2.3 Drainage Ditches and Channels -- Example Calculation of Peak Flow Rate for a Ditch -- 6.2.3 Hydraulic Head and Maximum Area for Structure -- 6.2.3.1 Hydraulic Head for Un-sealed Structures with Flow from Top-Downward -- 6.2.3.2 Hydraulic Head for Sealed Structures with Flow from Bottom-Upward -- 6.3 Drainage of the P Removal Structure: Balancing Flow Rate with Retention Time -- 6.3.1 Water Flow Through the P Removal Structure -- 6.3.1.1 Uniform Inflow Distribution -- 6.3.2 Retention Time -- 6.3.3 Drainage of the P Removal Structure.
6.4 General Procedure for Conducting a Structure Design and Information Obtained -- 6.4.1 General Design Procedure -- 6.4.2 General Results from Conducting a Proper Design -- 6.5 Optional: Total and Particulate P Removal with Sediment Reduction -- 6.5.1 Estimating Sediment Load Reduction -- 6.5.2 Estimating Total P and Particulate P Reductions from Sediment Removal Within the Structure -- 6.6 Further Considerations in Design and Construction -- 6.6.1 Free Drainage -- 6.6.2 Using a "Cap Layer" for Fine-Textured PSMs -- 6.6.3 Use of Flow Control Structures -- 6.6.4 Overflow -- References -- Chapter 7: Using the Phrog Software -- 7.1 Designing a P Removal Structure vs. Predicting Performance of an Existing Structure -- 7.2 Two Broad Styles for P Removal Structures: Bed vs. Ditch Structure -- 7.3 Specific Inputs Required for Design of a  P Removal Structure -- 7.3.1 Chemical and Physical Characteristics of PSM to Be Used -- 7.3.2 Site Characteristics, Constraints, and Target P Removal Goals -- 7.3.2.1 Desired Retention Time (Minutes) -- 7.3.2.2 Dissolved P Concentration (mg L−1) -- 7.3.2.3 Annual Flow Volume (Gallons) -- 7.3.2.4 Desired Removal Goal (%) and Lifetime (Years) -- 7.3.2.5 Drainage Pipe Diameter (Inches) and Slope (Decimal Form) -- 7.3.2.6 Minimum Peak Flow Rate Through Structure (gpm) -- 7.3.2.7 Maximum Decrease in Ditch Flow Capacity (for Ditch Structures Only: %) -- 7.3.2.8 Maximum Length and Width (ft) -- 7.3.2.9 Hydraulic Head (Inches) -- 7.3.2.10 Ditch Characteristics: Size and Lining (for Ditch Structures Only) -- 7.3.3 Additional Inputs for Predicting Performance of an Existing Structure -- 7.3.3.1 Number of Drainage Pipes -- 7.3.3.2 Length and Width of Structure (ft) -- 7.3.3.3 Mass (Tons) and Depth (Inches) of PSM -- 7.3.4 Optional Inputs for Estimating Total and Particulate P Removal.
7.3.4.1 Total P and Sediment Concentration (mg L−1) -- 7.3.4.2 Sediment Deposition Rate (g min−1) -- 7.4 General Output from Phrog Software When Conducting a Design -- 7.4.1 Output: Physical Construction Specifications -- 7.4.2 Output: Predicted Structure Performance and Guidance in Obtaining a Suitable Design -- 7.5 Case Studies Using Phrog to Design or Predict -- 7.5.1 Design a Ditch Structure: Details of Phrog Use and Example of How to Simultaneously Meet the Target Flow Rate and Retention Time -- 7.5.1.1 Inputs -- 7.5.1.2 Outputs and Responding to Unmet User Goals -- 7.5.1.3 Conducting a Second Ditch Structure Design for the Same Site with a Different PSM -- 7.5.2 Predict Performance of an Existing Ditch Structure -- 7.5.3 Design a Subsurface Bed Structure for Treating Tile Drainage -- 7.5.3.1 Example of Exceeding Area Constraint -- 7.5.3.2 Example of Comparing Two Different Ca-Based PSMs in Structure Design -- 7.5.4 Predict the Performance of a Blind Inlet and Demonstration of Predicting Particulate and Total P Removal -- 7.5.5 Bio-retention Cells -- 7.5.5.1 Example Bio-retention Cell Design and Demonstration of Altering Subsurface Drainage Pipe Diameter -- 7.5.5.2 Predict Performance of an Existing Bioretention Cell -- 7.5.6 Design a Confined Bed Located on a CAFO -- 7.5.7 Wastewater Treatment Plant Tertiary P Treatment and Example Use of Direct Input of Design Curve Coefficients -- Reference -- Chapter 8: Disposal of Spent Phosphorus Sorption Materials -- 8.1 Use of Spent PSMs as a P Fertilizer -- 8.1.1 Testing PSMs to Determine Potential for P Release to Plants or Runoff After Land Application to Soil -- 8.1.1.1 Assessing the Potential for a Spent PSM to Release P to Runoff or Leachate -- 8.1.1.2 Assessing the Potential Use of Spent PSMs as Fertilizer -- 8.2 Extraction of P from Spent PSMs and Potential Recharge.
8.2.1 Stripping P from Spent PSMs: Is It Worth It?.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Call number URL Status Date due Barcode
Electronic Book UT Tyler Online
Online
GE1-350 (Browse shelf) http://ebookcentral.proquest.com/lib/uttyler/detail.action?docID=4901231 Available EBC4901231

Dedication -- Preface -- Acknowledgements -- Contents -- Terms and Abbreviations -- Chapter 1: Introduction to Phosphorus and Water Quality -- 1.1 The Role of Phosphorus in Ecosystems -- 1.1.1 Eutrophication -- 1.1.2 Cultural and Political Response to Eutrophication Issues -- 1.2 Sources of Phosphorus Transported to Surface Waters -- 1.2.1 Point Sources (Wastewater Treatment Plants) -- 1.2.1.1 Phosphorus in Soaps -- 1.2.1.2 Wastewater Treatment Processes -- 1.2.2 Non-point Phosphorus Sources and Forms -- 1.2.2.1 Urban Grassed Areas -- 1.2.2.2 Agricultural Areas -- 1.3 Best Management Practices and Dissolved Phosphorus Losses -- References -- Chapter 2: Reducing Phosphorus Transport: An Overview of Best Management Practices -- 2.1 Dealing with Eutrophication: Treat the Symptoms or the Cause? -- 2.2 Incidental vs. Legacy Phosphorus Losses -- 2.3 Legacy Phosphorus -- 2.3.1 Preventing Legacy P from Occurring -- 2.3.1.1 Nutrient Management Planning -- 2.3.1.2 Manipulation of Animal Diet -- 2.3.1.3 Manure Export -- 2.3.2 Containment of Legacy Phosphorus Losses -- 2.3.2.1 Tillage Practices -- 2.3.2.2 Soil and Manure Amendments -- 2.3.2.3 Soil and Water Transport Reduction -- 2.3.3 Remediation of Legacy Phosphorus -- 2.3.3.1 Eliminating the Source: Phosphorus Drawdown (Phyto-remediation) -- 2.3.3.2 Phosphorus Removal Structures: Immediately Responsive P Reductions -- References -- Chapter 3: Phosphorus Removal Structures as a Short-­Term Solution for the Problem of Dissolved Phosphorus Transport to Surface Waters -- 3.1 Purpose, Concept, and General Theory of Phosphorus Removal Structures -- 3.1.1 How the Phosphorus Removal Structure Works for Removing the Target Pollutant: Dissolved Phosphorus -- 3.1.1.1 Essential Components of a Phosphorus Removal Structure -- 3.1.1.2 Site Requirements for a Phosphorus Removal Structure.

3.1.2 Choosing the Most Efficient Target Locations for a Phosphorus Removal Structure -- 3.1.2.1 Example of Choosing the Most Efficient Location for Constructing a Phosphorus Removal Structure -- 3.2 Examples and Applications of Phosphorus Removal Structures -- 3.2.1 Modular Box -- 3.2.2 Ditch-Filter -- 3.2.3 Surface Confined Bed -- 3.2.4 Cartridges -- 3.2.5 Pond Filter -- 3.2.6 Blind/Surface Inlets -- 3.2.7 Bio-Retention Cell -- 3.2.8 Subsurface Tile Drain Filter -- 3.2.9 Waste-Water Treatment Structures -- 3.2.10 Treatment at Confined Animal Feeding Operations -- 3.2.11 Treatment at Silage Bunkers -- 3.3 Summary of P Removal Structure Styles -- References -- Chapter 4: Phosphorus Sorption Materials (PSMs): The Heart of the Phosphorus Removal Structure -- 4.1 What Are PSMs? -- 4.1.1 Examples of PSMs -- 4.1.2 Choosing a PSM -- 4.2 What Makes a Material an Effective PSM? -- 4.2.1 P Sorption Capacity and Kinetics of P Removal -- 4.2.1.1 P Sorption Mechanisms and Sensitivity to Retention Time -- Calcium-Based PSMs -- Iron and Aluminum-Based PSMs -- 4.2.2 Physical Properties Important to PSMs -- 4.2.3 Safety Considerations of PSMs -- 4.2.3.1 Heavy Metals -- 4.2.3.2 pH and Alkalinity -- 4.3 The Paradox of Many PSMs -- 4.3.1 Potential Solutions for PSMs with Insufficient Hydraulic Conductivity -- 4.3.2 A Note on the Use of Steel Slag and Chemical Treatment -- References -- Chapter 5: Characterization of PSMs -- 5.1 Measuring and Estimating P Removal: Flow-Through vs. Batch Tests -- 5.2 The P Removal Design Curve -- 5.2.1 Method for Direct Measurement of the Design Curve: Flow-Through Experiment -- 5.2.2 Indirect Estimation of the P Design Curve Through Characterization of PSMs -- 5.2.2.1 pH Measurement -- 5.2.2.2 Measurement of Total Ca, Al, and Fe by Total Digestion -- 5.2.2.3 Measurement of Amorphous Al and Fe -- 5.2.2.4 Measurement of pH Buffer Index.

5.2.2.5 Measurement of Mean Particle Size -- 5.3 Methods of Physical Characterization of PSMs Necessary for Designing a P Removal Structure -- 5.3.1 Measurement of Bulk Density -- 5.3.2 Measurement of Porosity and Particle Density -- 5.3.3 Measurement of Saturated Hydraulic Conductivity -- 5.4 Methods of Safety Characterization of PSMs -- 5.4.1 Total Metal Concentration by Digestion -- 5.4.2 Method for Water Soluble Metals -- 5.4.3 Synthetic Precipitation Leaching Procedure (SPLP) -- References -- Chapter 6: Designing a Phosphorus Removal Structure -- 6.1 Designing Structures to Achieve Target P Load Removal and Lifetime -- 6.1.1 Use of the Design Curve and Governing Equations for Designing Structures -- 6.1.2 Determining the Required Mass of PSM for a P Removal Structure -- 6.2 Site Characterization Inputs Required for Conducting a Design -- 6.2.1 Average Annual Dissolved P Load -- 6.2.1.1 Average Annual Flow Volume -- 6.2.1.2 Average Dissolved P Concentration -- 6.2.1.3 Example Calculations of Annual P Load -- Example 1: Runoff Originating from Around CAFO Units -- Example 2: Runoff Originating from Several Suburban Housing Developments -- Example 3: Tile Drainage from an Agricultural Field -- 6.2.2 Peak Flow Rates -- 6.2.2.1 Surface Runoff -- 6.2.2.2 Subsurface Drain Pipes -- 6.2.2.3 Drainage Ditches and Channels -- Example Calculation of Peak Flow Rate for a Ditch -- 6.2.3 Hydraulic Head and Maximum Area for Structure -- 6.2.3.1 Hydraulic Head for Un-sealed Structures with Flow from Top-Downward -- 6.2.3.2 Hydraulic Head for Sealed Structures with Flow from Bottom-Upward -- 6.3 Drainage of the P Removal Structure: Balancing Flow Rate with Retention Time -- 6.3.1 Water Flow Through the P Removal Structure -- 6.3.1.1 Uniform Inflow Distribution -- 6.3.2 Retention Time -- 6.3.3 Drainage of the P Removal Structure.

6.4 General Procedure for Conducting a Structure Design and Information Obtained -- 6.4.1 General Design Procedure -- 6.4.2 General Results from Conducting a Proper Design -- 6.5 Optional: Total and Particulate P Removal with Sediment Reduction -- 6.5.1 Estimating Sediment Load Reduction -- 6.5.2 Estimating Total P and Particulate P Reductions from Sediment Removal Within the Structure -- 6.6 Further Considerations in Design and Construction -- 6.6.1 Free Drainage -- 6.6.2 Using a "Cap Layer" for Fine-Textured PSMs -- 6.6.3 Use of Flow Control Structures -- 6.6.4 Overflow -- References -- Chapter 7: Using the Phrog Software -- 7.1 Designing a P Removal Structure vs. Predicting Performance of an Existing Structure -- 7.2 Two Broad Styles for P Removal Structures: Bed vs. Ditch Structure -- 7.3 Specific Inputs Required for Design of a  P Removal Structure -- 7.3.1 Chemical and Physical Characteristics of PSM to Be Used -- 7.3.2 Site Characteristics, Constraints, and Target P Removal Goals -- 7.3.2.1 Desired Retention Time (Minutes) -- 7.3.2.2 Dissolved P Concentration (mg L−1) -- 7.3.2.3 Annual Flow Volume (Gallons) -- 7.3.2.4 Desired Removal Goal (%) and Lifetime (Years) -- 7.3.2.5 Drainage Pipe Diameter (Inches) and Slope (Decimal Form) -- 7.3.2.6 Minimum Peak Flow Rate Through Structure (gpm) -- 7.3.2.7 Maximum Decrease in Ditch Flow Capacity (for Ditch Structures Only: %) -- 7.3.2.8 Maximum Length and Width (ft) -- 7.3.2.9 Hydraulic Head (Inches) -- 7.3.2.10 Ditch Characteristics: Size and Lining (for Ditch Structures Only) -- 7.3.3 Additional Inputs for Predicting Performance of an Existing Structure -- 7.3.3.1 Number of Drainage Pipes -- 7.3.3.2 Length and Width of Structure (ft) -- 7.3.3.3 Mass (Tons) and Depth (Inches) of PSM -- 7.3.4 Optional Inputs for Estimating Total and Particulate P Removal.

7.3.4.1 Total P and Sediment Concentration (mg L−1) -- 7.3.4.2 Sediment Deposition Rate (g min−1) -- 7.4 General Output from Phrog Software When Conducting a Design -- 7.4.1 Output: Physical Construction Specifications -- 7.4.2 Output: Predicted Structure Performance and Guidance in Obtaining a Suitable Design -- 7.5 Case Studies Using Phrog to Design or Predict -- 7.5.1 Design a Ditch Structure: Details of Phrog Use and Example of How to Simultaneously Meet the Target Flow Rate and Retention Time -- 7.5.1.1 Inputs -- 7.5.1.2 Outputs and Responding to Unmet User Goals -- 7.5.1.3 Conducting a Second Ditch Structure Design for the Same Site with a Different PSM -- 7.5.2 Predict Performance of an Existing Ditch Structure -- 7.5.3 Design a Subsurface Bed Structure for Treating Tile Drainage -- 7.5.3.1 Example of Exceeding Area Constraint -- 7.5.3.2 Example of Comparing Two Different Ca-Based PSMs in Structure Design -- 7.5.4 Predict the Performance of a Blind Inlet and Demonstration of Predicting Particulate and Total P Removal -- 7.5.5 Bio-retention Cells -- 7.5.5.1 Example Bio-retention Cell Design and Demonstration of Altering Subsurface Drainage Pipe Diameter -- 7.5.5.2 Predict Performance of an Existing Bioretention Cell -- 7.5.6 Design a Confined Bed Located on a CAFO -- 7.5.7 Wastewater Treatment Plant Tertiary P Treatment and Example Use of Direct Input of Design Curve Coefficients -- Reference -- Chapter 8: Disposal of Spent Phosphorus Sorption Materials -- 8.1 Use of Spent PSMs as a P Fertilizer -- 8.1.1 Testing PSMs to Determine Potential for P Release to Plants or Runoff After Land Application to Soil -- 8.1.1.1 Assessing the Potential for a Spent PSM to Release P to Runoff or Leachate -- 8.1.1.2 Assessing the Potential Use of Spent PSMs as Fertilizer -- 8.2 Extraction of P from Spent PSMs and Potential Recharge.

8.2.1 Stripping P from Spent PSMs: Is It Worth It?.

Description based on publisher supplied metadata and other sources.

There are no comments for this item.

Log in to your account to post a comment.