Observing the Oceans in Real Time.

By: Venkatesan, RContributor(s): Tandon, Amit | Atmanand, M. A | D'Asaro, EricMaterial type: TextTextSeries: eBooks on DemandSpringer Oceanography Ser: Publisher: Cham : Springer, 2017Copyright date: ©2018Description: 1 online resource (322 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783319664934Subject(s): Oceanography-Methodology | Oceanography-ResearchGenre/Form: Electronic books.Additional physical formats: Print version:: Observing the Oceans in Real TimeDDC classification: 551.46 LOC classification: GB3-5030Online resources: Click here to view this ebook.
Contents:
Intro -- Foreword -- Preface -- Contents -- About the Editors -- Part I: Introduction -- Recent Trends in Ocean Observations -- 1 Introduction -- 2 Recent Trends in Ocean Observations -- 3 Emerging Trends -- 4 Concluding Remarks -- References -- Part II: Surface Observations -- Observing Surface Meteorology and Air-Sea Fluxes -- 1 Introduction -- 2 The Required Observations and the Challenges -- 3 Sensors and Sensor Modules -- 4 Buoy Installation, Data Logging, and Telemetry -- 5 Accuracies Achieved in Surface Meteorology and Air-Sea Fluxes -- 6 Conclusions and Future Work -- References -- Drifter Technology and Impacts for Sea Surface Temperature, Sea-Level Pressure, and Ocean Circulation Studies -- 1 Lagrangian Drifter Technology -- 1.1 The Velocity-Temperature (SVP) Drifter -- 1.2 The Barometer Drifter (SVPB) -- 1.3 The Salinity Drifter (SVPS) -- 1.4 The Minimet Wind Drifter (SVPW) and the Autonomous Drifting Ocean Station (ADOS) -- 1.5 Coastal Ocean Dynamics Experiment (CODE) Drifter and River Drifter (RD) -- 2 The Global Drifter Program -- 3 Impacts of the Global Drifter Program Data -- 3.1 Sea Surface Temperature -- 3.2 Sea-Level Atmospheric Pressure: Climate Studies -- 3.3 Sea-Level Atmospheric Pressure: Numerical Weather Prediction -- 3.4 Subsurface Temperature, Air Pressure and Wind: The Seasonal Hurricane Array -- 3.5 Ocean Currents -- 4 Conclusions -- References -- Origin, Transformation and Measurement of Waves in Ocean -- 1 Introduction -- 2 Generation of Waves -- 3 Wave Measurement Systems -- 3.1 Principle of Resistance -- 3.2 Pressure Variation -- 3.3 Acoustic Principle -- 3.4 Principle of Acceleration -- 3.5 GPS-Based Measurement -- 3.6 Remote Sensing/Radar Techniques -- 3.7 Pilot Project on Wave Measurement Evaluation and Test (PP-WET) -- 4 Estimation of Wave Climate Using Measurements and Numerical Modelling.
5 Wave Data Analysis -- 5.1 Wave Characteristics in North Indian Ocean -- 5.2 Design Waves -- 5.3 Extreme Waves -- Reference -- Part III: Subsurface Observations -- Oceanographic Floats: Principles of Operation -- 1 Introduction -- 2 Float Density and Behavior -- 3 Float Drag in a Stratified Ocean -- 4 Float Maneuvers -- 5 A Dynamic Float Control Algorithm -- 6 Control Regimes -- 7 Usage and Performance -- 8 Issues and Future Progress -- References -- Measuring Ocean Turbulence -- 1 Introduction -- 1.1 Turbulence in the Ocean -- 1.1.1 Reynolds Decomposition of Stationary, Homogeneous, and Isotropic Flows -- 1.1.2 Dimensional Analyses and the Length Scales of Turbulence -- 1.2 Theoretical Spectra and Subranges -- 1.3 Early Developments in the Measurement of Ocean Microstructure and Turbulence -- 2 Quantifying Turbulence with Ocean Measurements -- 2.1 Integral Approaches -- 2.2 Finescale Parameterizations -- 2.2.1 Calculation from Vertical Shear -- 2.2.2 Calculation from Strain -- 2.3 Direct Microstructure Measurements -- 2.3.1 Calculating the Turbulent Kinetic Energy Dissipation Rate -- 2.3.2 Calculating the Dissipation of Thermal (Scalar) Variance -- 3 Summary -- References -- Underwater Gliders -- 1 Introduction -- 2 Design and Development History -- 2.1 Challenges and Design Philosophy -- 2.2 Development History -- 3 Applications and Strategies -- 3.1 Boundary Currents -- 3.2 Process Studies -- 3.3 Biology and Biogeochemistry -- 3.4 Polar Regions -- 4 Lessons and Future Directions -- References -- Advances in In-Situ Ocean Measurements -- 1 Introduction -- 2 Conductivity Sensors -- 2.1 Conductivity Sensor Metrology and Calibration -- 2.2 Conductivity Sensor Response Characteristics -- 2.3 Conductivity Sensor Drift and Calibration Stability -- 3 Temperature Sensors -- 3.1 Temperature Sensor Metrology and Calibration.
3.2 Temperature Sensor Response Characteristics -- 3.3 Temperature Sensor Drift and Calibration Stability -- 4 Pressure Sensors -- 4.1 Pressure Sensor Metrology and Calibration -- 4.2 Pressure Sensor Response Characteristics -- 4.3 Pressure Sensor Drift and Calibration Stability -- 5 Dissolved Oxygen Sensors -- 5.1 Dissolved Oxygen Sensor Metrology and Calibration -- 5.2 Dissolved Oxygen Response Characteristics -- 5.3 Dissolved Oxygen Sensor Drift and Calibration Stability -- 6 pH Sensors -- 6.1 pH Sensor Metrology and Calibration -- 6.2 pH Sensor Response Characteristics -- 6.3 pH Sensor Drift and Calibration Stability -- References -- Part IV: Remote Sensing -- Ocean Remote Sensing: Concept to Realization for Physical Oceanographic Studies -- 1 Introduction -- 2 Remote Sensing of Sea Surface Temperature -- 2.1 Measurement Principle: Thermal IR and Microwave Regime -- 2.2 Retrieval of Geophysical Parameters -- 2.3 Accuracy, Precision, and Sampling -- 2.4 Applications of Sea Surface Temperature -- 2.5 New Frontier in SST Measurements -- 3 Satellite Altimetry: A Versatile Tool for Ocean Applications -- 3.1 History of Satellite Altimetry -- 3.2 Measurement Principles -- 3.3 Retrieval of Geophysical Parameters (Sea Surface Height, Significant Wave Height, and Wind Speed) -- 3.4 Coastal Altimetry: A Challenging Task -- 3.5 Oceanographic Applications of Altimeter-Derived Parameters -- 3.6 GNSS-R and Swath Altimetry -- 4 Satellite Scatteromerty: Measuring the Ocean Surface Winds -- 4.1 Past, Present, and Future Scatterometers -- 4.2 Basic Measurement Techniques: em Interaction with Roughness -- 4.3 Retrieval of Ocean Surface Winds from Backscattering -- 4.4 Accuracy, Swath, and Resolution -- 4.5 Ocean and Ice Applications of Scatterometry -- 4.6 New Concept in Scatterometry -- 5 Synthetic Aperture Radar: Exploring Fine-Scale Processes.
5.1 Concept and Principles of SAR Technology -- 5.2 Ocean Surface Imaging -- 5.3 Retrieval of Oceanographic Parameters -- 5.4 Oceanographic Applications of SAR -- 5.5 Future Advancements in SAR -- 6 Remote Sensing of Ocean Salinity: Filling the Missing Gap in Ocean Observation -- 6.1 Satellite Instruments for Salinity -- 6.2 Measurement Principles and Challenges for Salinity Retrieval from Space -- 6.3 Accuracy and Spatiotemporal Sampling -- 6.4 Applications of Satellite-Derived Salinity -- 7 End Remarks -- References -- Near Real-Time Underwater Passive Acoustic Monitoring of Natural and Anthropogenic Sounds -- 1 Introduction -- 2 Instruments -- 3 Platforms -- 3.1 Fixed Platforms -- 3.2 Mobile Nonnavigated Platforms -- 3.3 Mobile Navigated Platforms -- 4 Measurements -- 4.1 Biotic -- 4.2 Abiotic Sources - Natural and Anthropogenic -- 5 Experience -- 5.1 Marine Mammal Monitoring in Real Time -- 5.2 Seismic Activity Monitoring -- 5.3 Real-Time Ambient Noise Monitoring -- 5.4 The Future of Real-Time Passive Acoustic Monitoring -- References -- Data Return Aspects of CODAR and WERA High-Frequency Radars in Mapping Currents -- 1 Introduction -- 2 Data -- 2.1 HF Radar Radial Current Data -- 2.2 Ocean Surface Wave Data -- 2.3 Wind Data -- 3 HF Radar Data Return -- 3.1 Spatial Patterns of HF Radar Data Return -- 3.2 Temporal Variation of HF Radar Data Return -- 4 Summary -- References -- Part V: Data -- Sensor Performance and Data Quality Control -- 1 Optimizing Observations -- 1.1 Instrument Selection -- 1.2 Instrument Preparation -- 1.2.1 Calibration -- 1.2.2 Configuration -- 1.3 Instrument Integration -- 1.3.1 Mooring Design -- 1.3.2 Burn-in and Telemetry Testing -- 1.3.3 Deployment Preparations -- 2 Data Quality Assurance -- 2.1 Data Quality Evaluation -- 2.1.1 Telemetry Monitoring -- 2.1.2 Intercomparison -- 2.1.3 Postrecovery Procedures.
2.2 Data Processing -- 3 Telemetry and Real-Time Data -- 3.1 Limitations and Benefits of Real-Time Data -- 3.2 Telemetry Systems Overview -- 3.3 Monitoring Data Output and Quality -- 3.3.1 Monitoring Techniques -- 3.3.2 Quality of Real-Time Data -- References -- Near Real-Time Data Recovery from Oceanographic Moorings -- 1 Introduction -- 1.1 Deep Ocean Subsurface Moorings -- 1.2 Deep Ocean Surface Moorings -- 1.3 Shallow Water Surface Moorings -- 2 Conclusion -- References -- Managing Meteorological and Oceanographic In Situ Data in the WMO Framework -- 1 Requirements for Marine Meteorological and Oceanographic (Meteo-ocean) Data for WMO Applications -- 1.1 The Role of the WMO -- 1.2 The WMO Application Areas -- 1.3 The Use of Meteo-ocean Data -- 1.4 Documenting the User Requirements -- 1.5 Gap Analysis -- 1.6 Guidance to WMO Member Countries and Territories on the Evolution of Global Observing Systems -- 2 The Role of the WMO in the Making and Collection of Meteo-ocean Data -- 2.1 International Cooperation Between Meteorologists and Oceanographers for the Making of Meteo-ocean Observations -- 2.2 Observing Platforms -- 2.3 Satellite Data Telecommunication -- 3 Meteo-ocean Data Management in the WMO Framework -- 3.1 Real-Time Data Exchange -- 3.2 Delayed Mode Data Exchange -- 3.3 Recent Approaches Regarding Ocean Data Integration -- 3.4 Quality Control and Feedback to the Observing Platform Operators -- 3.5 Instrument and Platform Metadata -- 3.6 Data Discovery Metadata -- 3.7 Data Policies -- 3.8 How to Access Data -- 3.9 Incentive for Sharing the Data -- 4 Conclusion -- Part VI: Societal Applications -- Applications of Ocean In-situ Observations and Its Societal Relevance -- 1 Introduction -- 2 The Current Status of the Ocean Observations Network in the Indian Ocean -- 3 The Importance and Application of the In-Situ Ocean Observation Network.
3.1 Better Understanding of Weather and Climate.
Tags from this library: No tags from this library for this title. Log in to add tags.

Intro -- Foreword -- Preface -- Contents -- About the Editors -- Part I: Introduction -- Recent Trends in Ocean Observations -- 1 Introduction -- 2 Recent Trends in Ocean Observations -- 3 Emerging Trends -- 4 Concluding Remarks -- References -- Part II: Surface Observations -- Observing Surface Meteorology and Air-Sea Fluxes -- 1 Introduction -- 2 The Required Observations and the Challenges -- 3 Sensors and Sensor Modules -- 4 Buoy Installation, Data Logging, and Telemetry -- 5 Accuracies Achieved in Surface Meteorology and Air-Sea Fluxes -- 6 Conclusions and Future Work -- References -- Drifter Technology and Impacts for Sea Surface Temperature, Sea-Level Pressure, and Ocean Circulation Studies -- 1 Lagrangian Drifter Technology -- 1.1 The Velocity-Temperature (SVP) Drifter -- 1.2 The Barometer Drifter (SVPB) -- 1.3 The Salinity Drifter (SVPS) -- 1.4 The Minimet Wind Drifter (SVPW) and the Autonomous Drifting Ocean Station (ADOS) -- 1.5 Coastal Ocean Dynamics Experiment (CODE) Drifter and River Drifter (RD) -- 2 The Global Drifter Program -- 3 Impacts of the Global Drifter Program Data -- 3.1 Sea Surface Temperature -- 3.2 Sea-Level Atmospheric Pressure: Climate Studies -- 3.3 Sea-Level Atmospheric Pressure: Numerical Weather Prediction -- 3.4 Subsurface Temperature, Air Pressure and Wind: The Seasonal Hurricane Array -- 3.5 Ocean Currents -- 4 Conclusions -- References -- Origin, Transformation and Measurement of Waves in Ocean -- 1 Introduction -- 2 Generation of Waves -- 3 Wave Measurement Systems -- 3.1 Principle of Resistance -- 3.2 Pressure Variation -- 3.3 Acoustic Principle -- 3.4 Principle of Acceleration -- 3.5 GPS-Based Measurement -- 3.6 Remote Sensing/Radar Techniques -- 3.7 Pilot Project on Wave Measurement Evaluation and Test (PP-WET) -- 4 Estimation of Wave Climate Using Measurements and Numerical Modelling.

5 Wave Data Analysis -- 5.1 Wave Characteristics in North Indian Ocean -- 5.2 Design Waves -- 5.3 Extreme Waves -- Reference -- Part III: Subsurface Observations -- Oceanographic Floats: Principles of Operation -- 1 Introduction -- 2 Float Density and Behavior -- 3 Float Drag in a Stratified Ocean -- 4 Float Maneuvers -- 5 A Dynamic Float Control Algorithm -- 6 Control Regimes -- 7 Usage and Performance -- 8 Issues and Future Progress -- References -- Measuring Ocean Turbulence -- 1 Introduction -- 1.1 Turbulence in the Ocean -- 1.1.1 Reynolds Decomposition of Stationary, Homogeneous, and Isotropic Flows -- 1.1.2 Dimensional Analyses and the Length Scales of Turbulence -- 1.2 Theoretical Spectra and Subranges -- 1.3 Early Developments in the Measurement of Ocean Microstructure and Turbulence -- 2 Quantifying Turbulence with Ocean Measurements -- 2.1 Integral Approaches -- 2.2 Finescale Parameterizations -- 2.2.1 Calculation from Vertical Shear -- 2.2.2 Calculation from Strain -- 2.3 Direct Microstructure Measurements -- 2.3.1 Calculating the Turbulent Kinetic Energy Dissipation Rate -- 2.3.2 Calculating the Dissipation of Thermal (Scalar) Variance -- 3 Summary -- References -- Underwater Gliders -- 1 Introduction -- 2 Design and Development History -- 2.1 Challenges and Design Philosophy -- 2.2 Development History -- 3 Applications and Strategies -- 3.1 Boundary Currents -- 3.2 Process Studies -- 3.3 Biology and Biogeochemistry -- 3.4 Polar Regions -- 4 Lessons and Future Directions -- References -- Advances in In-Situ Ocean Measurements -- 1 Introduction -- 2 Conductivity Sensors -- 2.1 Conductivity Sensor Metrology and Calibration -- 2.2 Conductivity Sensor Response Characteristics -- 2.3 Conductivity Sensor Drift and Calibration Stability -- 3 Temperature Sensors -- 3.1 Temperature Sensor Metrology and Calibration.

3.2 Temperature Sensor Response Characteristics -- 3.3 Temperature Sensor Drift and Calibration Stability -- 4 Pressure Sensors -- 4.1 Pressure Sensor Metrology and Calibration -- 4.2 Pressure Sensor Response Characteristics -- 4.3 Pressure Sensor Drift and Calibration Stability -- 5 Dissolved Oxygen Sensors -- 5.1 Dissolved Oxygen Sensor Metrology and Calibration -- 5.2 Dissolved Oxygen Response Characteristics -- 5.3 Dissolved Oxygen Sensor Drift and Calibration Stability -- 6 pH Sensors -- 6.1 pH Sensor Metrology and Calibration -- 6.2 pH Sensor Response Characteristics -- 6.3 pH Sensor Drift and Calibration Stability -- References -- Part IV: Remote Sensing -- Ocean Remote Sensing: Concept to Realization for Physical Oceanographic Studies -- 1 Introduction -- 2 Remote Sensing of Sea Surface Temperature -- 2.1 Measurement Principle: Thermal IR and Microwave Regime -- 2.2 Retrieval of Geophysical Parameters -- 2.3 Accuracy, Precision, and Sampling -- 2.4 Applications of Sea Surface Temperature -- 2.5 New Frontier in SST Measurements -- 3 Satellite Altimetry: A Versatile Tool for Ocean Applications -- 3.1 History of Satellite Altimetry -- 3.2 Measurement Principles -- 3.3 Retrieval of Geophysical Parameters (Sea Surface Height, Significant Wave Height, and Wind Speed) -- 3.4 Coastal Altimetry: A Challenging Task -- 3.5 Oceanographic Applications of Altimeter-Derived Parameters -- 3.6 GNSS-R and Swath Altimetry -- 4 Satellite Scatteromerty: Measuring the Ocean Surface Winds -- 4.1 Past, Present, and Future Scatterometers -- 4.2 Basic Measurement Techniques: em Interaction with Roughness -- 4.3 Retrieval of Ocean Surface Winds from Backscattering -- 4.4 Accuracy, Swath, and Resolution -- 4.5 Ocean and Ice Applications of Scatterometry -- 4.6 New Concept in Scatterometry -- 5 Synthetic Aperture Radar: Exploring Fine-Scale Processes.

5.1 Concept and Principles of SAR Technology -- 5.2 Ocean Surface Imaging -- 5.3 Retrieval of Oceanographic Parameters -- 5.4 Oceanographic Applications of SAR -- 5.5 Future Advancements in SAR -- 6 Remote Sensing of Ocean Salinity: Filling the Missing Gap in Ocean Observation -- 6.1 Satellite Instruments for Salinity -- 6.2 Measurement Principles and Challenges for Salinity Retrieval from Space -- 6.3 Accuracy and Spatiotemporal Sampling -- 6.4 Applications of Satellite-Derived Salinity -- 7 End Remarks -- References -- Near Real-Time Underwater Passive Acoustic Monitoring of Natural and Anthropogenic Sounds -- 1 Introduction -- 2 Instruments -- 3 Platforms -- 3.1 Fixed Platforms -- 3.2 Mobile Nonnavigated Platforms -- 3.3 Mobile Navigated Platforms -- 4 Measurements -- 4.1 Biotic -- 4.2 Abiotic Sources - Natural and Anthropogenic -- 5 Experience -- 5.1 Marine Mammal Monitoring in Real Time -- 5.2 Seismic Activity Monitoring -- 5.3 Real-Time Ambient Noise Monitoring -- 5.4 The Future of Real-Time Passive Acoustic Monitoring -- References -- Data Return Aspects of CODAR and WERA High-Frequency Radars in Mapping Currents -- 1 Introduction -- 2 Data -- 2.1 HF Radar Radial Current Data -- 2.2 Ocean Surface Wave Data -- 2.3 Wind Data -- 3 HF Radar Data Return -- 3.1 Spatial Patterns of HF Radar Data Return -- 3.2 Temporal Variation of HF Radar Data Return -- 4 Summary -- References -- Part V: Data -- Sensor Performance and Data Quality Control -- 1 Optimizing Observations -- 1.1 Instrument Selection -- 1.2 Instrument Preparation -- 1.2.1 Calibration -- 1.2.2 Configuration -- 1.3 Instrument Integration -- 1.3.1 Mooring Design -- 1.3.2 Burn-in and Telemetry Testing -- 1.3.3 Deployment Preparations -- 2 Data Quality Assurance -- 2.1 Data Quality Evaluation -- 2.1.1 Telemetry Monitoring -- 2.1.2 Intercomparison -- 2.1.3 Postrecovery Procedures.

2.2 Data Processing -- 3 Telemetry and Real-Time Data -- 3.1 Limitations and Benefits of Real-Time Data -- 3.2 Telemetry Systems Overview -- 3.3 Monitoring Data Output and Quality -- 3.3.1 Monitoring Techniques -- 3.3.2 Quality of Real-Time Data -- References -- Near Real-Time Data Recovery from Oceanographic Moorings -- 1 Introduction -- 1.1 Deep Ocean Subsurface Moorings -- 1.2 Deep Ocean Surface Moorings -- 1.3 Shallow Water Surface Moorings -- 2 Conclusion -- References -- Managing Meteorological and Oceanographic In Situ Data in the WMO Framework -- 1 Requirements for Marine Meteorological and Oceanographic (Meteo-ocean) Data for WMO Applications -- 1.1 The Role of the WMO -- 1.2 The WMO Application Areas -- 1.3 The Use of Meteo-ocean Data -- 1.4 Documenting the User Requirements -- 1.5 Gap Analysis -- 1.6 Guidance to WMO Member Countries and Territories on the Evolution of Global Observing Systems -- 2 The Role of the WMO in the Making and Collection of Meteo-ocean Data -- 2.1 International Cooperation Between Meteorologists and Oceanographers for the Making of Meteo-ocean Observations -- 2.2 Observing Platforms -- 2.3 Satellite Data Telecommunication -- 3 Meteo-ocean Data Management in the WMO Framework -- 3.1 Real-Time Data Exchange -- 3.2 Delayed Mode Data Exchange -- 3.3 Recent Approaches Regarding Ocean Data Integration -- 3.4 Quality Control and Feedback to the Observing Platform Operators -- 3.5 Instrument and Platform Metadata -- 3.6 Data Discovery Metadata -- 3.7 Data Policies -- 3.8 How to Access Data -- 3.9 Incentive for Sharing the Data -- 4 Conclusion -- Part VI: Societal Applications -- Applications of Ocean In-situ Observations and Its Societal Relevance -- 1 Introduction -- 2 The Current Status of the Ocean Observations Network in the Indian Ocean -- 3 The Importance and Application of the In-Situ Ocean Observation Network.

3.1 Better Understanding of Weather and Climate.

Description based on publisher supplied metadata and other sources.

There are no comments on this title.

to post a comment.