Hybrid Energy Systems : Driving Reliable Renewable Sources of Energy Storage.

By: Zohuri, BahmanMaterial type: TextTextSeries: eBooks on DemandPublisher: Cham : Springer, 2017Copyright date: ©2018Description: 1 online resource (296 pages)Content type: text Media type: computer Carrier type: online resourceISBN: 9783319707211Genre/Form: Electronic books.Additional physical formats: Print version:: Hybrid Energy Systems : Driving Reliable Renewable Sources of Energy StorageDDC classification: 621.042 LOC classification: QC71.82-73.8Online resources: Click here to view this ebook.
Contents:
Intro -- Dedication -- Preface -- Acknowledgments -- Contents -- About the Author -- Chapter 1: Hybrid Renewable Energy Systems -- 1.1 Introduction to Hybrid Energy System -- 1.1.1 Hybrid System as Source of Renewable Energy -- 1.2 Energy Storage Systems -- 1.3 Compressed Air Energy Storage (CAES) -- 1.3.1 Compressed Air Energy Storage (CAES) -- 1.3.2 Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) -- 1.4 Variable Electricity with Base-Load Reactor Operation -- 1.5 Why We Need Nuclear Power -- 1.5.1 The Merits of Total Transformation -- 1.5.2 The Downsides of Monoculture -- 1.5.3 The Other Zero-Carbon Energy: Nuclear -- 1.5.4 A Diverse Portfolio -- 1.6 Security of Energy Supply -- 1.7 Environmental Quality -- References -- Chapter 2: Cryogenic Technologies -- 2.1 Introduction -- 2.2 Low Temperature in Science and Technology -- 2.3 Defining Cryogenic Fluids or Liquids -- 2.3.1 Defining Cryogenic Fluids or Liquids -- 2.3.2 Thermophysical Properties -- 2.3.3 Liquid Boil-off -- 2.3.4 Cryogen Usage for Equipment Cooldown -- 2.3.5 Phase Domains -- 2.3.6 Personal Protective Equipment to Be Worn -- 2.3.7 Handling Cryogenic Liquids -- 2.3.8 Storing Cryogenic Liquids -- 2.3.9 Hazards of Cryogenic Liquids -- 2.3.10 General Hazards of Cryogenic Liquids -- 2.4 Heat Transfer and Thermal Design -- 2.4.1 Solid Conduction -- 2.4.2 Radiation -- 2.4.3 Convection -- 2.4.4 Gas Conduction -- 2.4.5 Multilayer Insulation -- 2.4.6 Vapor Cooling of Necks and Supports -- 2.5 Refrigeration and Liquefaction -- 2.5.1 Thermodynamics of Refrigeration -- 2.5.2 Helium Refrigerators Versus Liquefiers -- 2.5.3 Real Cycles and Refrigeration Equipment -- 2.6 Industrial Applications -- 2.6.1 Cryogenic Processing for Alloy Hardening -- 2.6.2 Cryogenic Fuels -- 2.6.3 Cryogenic Application in Nuclear Magnetic Resonance Spectroscopy (NMR).
2.6.4 Cryogenic Application in Magnetic Resonance Image (MRI) -- 2.6.5 Cryogenic Application in Frozen Food Transport -- 2.6.6 Cryogenic Application in Forward Looking Infrared (FLIR) -- 2.6.7 Cryogenic Application in Space -- 2.6.8 Cryogenic in Blood Banking, Medicine, and Surgery -- 2.6.9 Cryogenic in Manufacturing Process -- 2.6.10 Cryogenic in Recycling of Materials -- 2.7 Cryogenic Application in Research -- 2.7.1 Research Overview -- 2.7.2 Right: Lightweight, High Efficiency Cryocooler -- 2.7.3 Background -- 2.7.4 Right Liquefier Demo and Cryogenic Insulation Test Facility -- 2.8 Cryogenic Fluid Management -- 2.8.1 Benefits -- 2.9 Conclusion -- References -- Chapter 3: Reliable Renewables with Cryogenic Energy Storage -- 3.1 Introduction -- 3.2 Cryogenic Application in Electric Power Transmission within Big Cities -- 3.3 The Basic of Cryogenic Energy Storage (CES) -- 3.4 Cryogenic Energy Storage (CES) -- 3.5 Cryogenic Energy Storage (CES) Characteristics -- 3.5.1 Cryogenic Energy Storage (CES) a Wise Investment -- 3.6 Cryogenic Energy Storage (CES) in Nuclear Power Plants -- 3.6.1 Proposed Combined Cryogenic Energy Storage (CES) in Nuclear Power Plants -- References -- Chapter 4: Types of Renewable Energy -- 4.1 Introduction -- 4.2 What Are the Different Types of Renewable Energies? -- 4.2.1 Biomass -- 4.2.2 Solar Power -- 4.2.3 Wind Power -- 4.2.4 Tidal Power -- 4.2.5 Geothermal -- 4.3 Top Ten Renewable Energy Sources -- 4.3.1 Nuclear Power -- 4.3.2 Compressed Natural Gas -- 4.3.3 Biomass -- 4.3.4 Geothermal Power -- 4.3.5 Radiant Energy -- 4.3.6 Hydroelectricity Power Source -- 4.3.7 Wind Power -- 4.3.8 Solar Power -- 4.3.9 Wave Power -- 4.3.10 Tidal Power -- 4.4 How to Indirectly Participate in Any or All of These Sustainable Energy Solutions -- 4.5 Renewable Energy Certificates -- 4.5.1 Which Technologies Qualify for Certification?.
4.5.2 Bottom Line on Renewable Energy Certification -- 4.6 Issues with Adoption Forms of Renewable Source of Energy -- References -- Chapter 5: Hydrogen Energy Technology, Renewable Source of Energy -- 5.1 Introduction -- 5.2 Hydrogen as an Energy Carrier -- 5.3 Hydrogen Fuel Cell -- 5.4 Fuel Cells -- 5.4.1 Different Types of Fuel Cells -- 5.5 The Fuel Cell Technologies -- 5.6 Fuel Cell Backup Power Systems -- 5.7 Fuel Cell Systems for Stationary Combined Heat and Power Applications -- 5.8 Fuel Cell Systems for Portable Power and Auxiliary Power Applications -- 5.9 Hydrogen Storage -- 5.9.1 Why Study Hydrogen Storage -- 5.9.2 How Hydrogen Storage Works -- 5.9.3 Research and Development Goals -- 5.9.4 Hydrogen Storage Challenges -- 5.10 Hydrogen Energy Storage -- 5.10.1 Hydrogen Production -- 5.10.2 Hydrogen Re-electrification -- 5.11 Underground Hydrogen Storage -- 5.12 Materials-Based Hydrogen Storage -- 5.12.1 Technical Targets and Status -- 5.13 Industrial Application of Hydrogen Energy -- 5.14 Electrical Energy Storage -- 5.14.1 Characteristic of Electricity -- 5.14.2 Electricity and the Roles of Electrical Energy Storages -- 5.15 Strategic Asset Management of Power Networks -- 5.16 Orchestrating Infrastructure for Sustainable Smart Cities -- 5.16.1 Smart Technology Solution Create Value -- 5.16.2 New Approach to Smart City Solution -- 5.16.3 Stakeholders Are Key Drivers to Smart City Solution -- 5.16.4 Without Integration Rising to the Level of Systems There Cannot Smart City -- 5.16.5 Horizontal and Vertical Integration a Key to Interoperability -- 5.16.6 Interoperability Is the Key to Open Markets and to Competitive Solutions -- 5.16.7 Guiding Principles and Strategic Orientation -- References -- Chapter 6: Energy Storage for Peak Power and Increased Revenue -- 6.1 Introduction -- 6.2 Variable Electricity and Heat Storage.
6.3 Implications of Low-Carbon Grid and Renewables on Electricity Markets -- 6.4 Strategies for a Zero-Carbon Electricity Grid -- 6.5 Nuclear Air-Brayton Combined Cycle Strategies for Zero-Carbon Grid -- 6.6 Salt-Cooled Reactors Coupled to NACC Power System -- 6.7 Sodium-Cooled Reactors Coupled to NACC Power System -- 6.8 Power Cycle Comparisons -- 6.9 Summary -- References -- Chapter 7: Fission Nuclear Power Plants for Renewable Energy Source -- 7.1 Introduction -- 7.2 Electricity Markets -- 7.2.1 Global Electricity Consumption Set to Explode -- 7.2.1.1 Market Drivers -- 7.2.1.2 Market Restraints -- 7.2.1.3 Market Issues -- 7.2.1.4 Challenges -- 7.3 California and Others Are Getting It Wrong -- 7.4 Outlook for Power Generation -- 7.5 Why We Need Nuclear Power Plants -- 7.6 Is Nuclear Energy Renewable Source of Energy -- 7.6.1 Argument for Nuclear as Renewable Energy -- 7.6.2 Argument for Nuclear as Renewable Energy -- 7.6.3 Conclusion -- References -- Chapter 8: Energy Storage Technologies and Their Role in Renewable Integration -- 8.1 Introduction -- 8.2 The Electric Grid -- 8.3 Power Generation -- 8.4 Transmission and Distribution -- 8.5 Load Management -- 8.6 Types of Storage Technology -- 8.6.1 Kinetic Energy Storage or Flywheel Concept -- 8.6.2 Superconducting Magnetic Energy Storage -- 8.6.3 Batteries -- 8.6.3.1 Lead-Acid Batteries -- 8.6.3.2 Lithium-Ion Batteries -- 8.6.4 Other and Future Batteries in Development -- 8.7 A Battery-Inspired Strategy for Carbon Fixation -- 8.8 Saliva-Powered Battery -- 8.9 Summary -- References -- Appendix A: Global Energy Interconnection -- Introduction -- Global Energy Challenges -- Energy Security -- Climate Change -- Environmental Pollution -- Appendix B: Grid Integration of Large Capacity -- Introduction -- Expanding Energy Access -- Decarbonization.
Appendix C: Energy Storage for Power Grids and Electric Transportation -- Introduction -- Energy Stage Technology -- Energy Storage for Electric Grid Applications -- High-Power/Rapid Discharge Applications -- Energy Management Applications -- Energy Storage for Transportation Applications -- Appendix D: Coping with the Energy Challenge -- Introduction -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.

Intro -- Dedication -- Preface -- Acknowledgments -- Contents -- About the Author -- Chapter 1: Hybrid Renewable Energy Systems -- 1.1 Introduction to Hybrid Energy System -- 1.1.1 Hybrid System as Source of Renewable Energy -- 1.2 Energy Storage Systems -- 1.3 Compressed Air Energy Storage (CAES) -- 1.3.1 Compressed Air Energy Storage (CAES) -- 1.3.2 Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) -- 1.4 Variable Electricity with Base-Load Reactor Operation -- 1.5 Why We Need Nuclear Power -- 1.5.1 The Merits of Total Transformation -- 1.5.2 The Downsides of Monoculture -- 1.5.3 The Other Zero-Carbon Energy: Nuclear -- 1.5.4 A Diverse Portfolio -- 1.6 Security of Energy Supply -- 1.7 Environmental Quality -- References -- Chapter 2: Cryogenic Technologies -- 2.1 Introduction -- 2.2 Low Temperature in Science and Technology -- 2.3 Defining Cryogenic Fluids or Liquids -- 2.3.1 Defining Cryogenic Fluids or Liquids -- 2.3.2 Thermophysical Properties -- 2.3.3 Liquid Boil-off -- 2.3.4 Cryogen Usage for Equipment Cooldown -- 2.3.5 Phase Domains -- 2.3.6 Personal Protective Equipment to Be Worn -- 2.3.7 Handling Cryogenic Liquids -- 2.3.8 Storing Cryogenic Liquids -- 2.3.9 Hazards of Cryogenic Liquids -- 2.3.10 General Hazards of Cryogenic Liquids -- 2.4 Heat Transfer and Thermal Design -- 2.4.1 Solid Conduction -- 2.4.2 Radiation -- 2.4.3 Convection -- 2.4.4 Gas Conduction -- 2.4.5 Multilayer Insulation -- 2.4.6 Vapor Cooling of Necks and Supports -- 2.5 Refrigeration and Liquefaction -- 2.5.1 Thermodynamics of Refrigeration -- 2.5.2 Helium Refrigerators Versus Liquefiers -- 2.5.3 Real Cycles and Refrigeration Equipment -- 2.6 Industrial Applications -- 2.6.1 Cryogenic Processing for Alloy Hardening -- 2.6.2 Cryogenic Fuels -- 2.6.3 Cryogenic Application in Nuclear Magnetic Resonance Spectroscopy (NMR).

2.6.4 Cryogenic Application in Magnetic Resonance Image (MRI) -- 2.6.5 Cryogenic Application in Frozen Food Transport -- 2.6.6 Cryogenic Application in Forward Looking Infrared (FLIR) -- 2.6.7 Cryogenic Application in Space -- 2.6.8 Cryogenic in Blood Banking, Medicine, and Surgery -- 2.6.9 Cryogenic in Manufacturing Process -- 2.6.10 Cryogenic in Recycling of Materials -- 2.7 Cryogenic Application in Research -- 2.7.1 Research Overview -- 2.7.2 Right: Lightweight, High Efficiency Cryocooler -- 2.7.3 Background -- 2.7.4 Right Liquefier Demo and Cryogenic Insulation Test Facility -- 2.8 Cryogenic Fluid Management -- 2.8.1 Benefits -- 2.9 Conclusion -- References -- Chapter 3: Reliable Renewables with Cryogenic Energy Storage -- 3.1 Introduction -- 3.2 Cryogenic Application in Electric Power Transmission within Big Cities -- 3.3 The Basic of Cryogenic Energy Storage (CES) -- 3.4 Cryogenic Energy Storage (CES) -- 3.5 Cryogenic Energy Storage (CES) Characteristics -- 3.5.1 Cryogenic Energy Storage (CES) a Wise Investment -- 3.6 Cryogenic Energy Storage (CES) in Nuclear Power Plants -- 3.6.1 Proposed Combined Cryogenic Energy Storage (CES) in Nuclear Power Plants -- References -- Chapter 4: Types of Renewable Energy -- 4.1 Introduction -- 4.2 What Are the Different Types of Renewable Energies? -- 4.2.1 Biomass -- 4.2.2 Solar Power -- 4.2.3 Wind Power -- 4.2.4 Tidal Power -- 4.2.5 Geothermal -- 4.3 Top Ten Renewable Energy Sources -- 4.3.1 Nuclear Power -- 4.3.2 Compressed Natural Gas -- 4.3.3 Biomass -- 4.3.4 Geothermal Power -- 4.3.5 Radiant Energy -- 4.3.6 Hydroelectricity Power Source -- 4.3.7 Wind Power -- 4.3.8 Solar Power -- 4.3.9 Wave Power -- 4.3.10 Tidal Power -- 4.4 How to Indirectly Participate in Any or All of These Sustainable Energy Solutions -- 4.5 Renewable Energy Certificates -- 4.5.1 Which Technologies Qualify for Certification?.

4.5.2 Bottom Line on Renewable Energy Certification -- 4.6 Issues with Adoption Forms of Renewable Source of Energy -- References -- Chapter 5: Hydrogen Energy Technology, Renewable Source of Energy -- 5.1 Introduction -- 5.2 Hydrogen as an Energy Carrier -- 5.3 Hydrogen Fuel Cell -- 5.4 Fuel Cells -- 5.4.1 Different Types of Fuel Cells -- 5.5 The Fuel Cell Technologies -- 5.6 Fuel Cell Backup Power Systems -- 5.7 Fuel Cell Systems for Stationary Combined Heat and Power Applications -- 5.8 Fuel Cell Systems for Portable Power and Auxiliary Power Applications -- 5.9 Hydrogen Storage -- 5.9.1 Why Study Hydrogen Storage -- 5.9.2 How Hydrogen Storage Works -- 5.9.3 Research and Development Goals -- 5.9.4 Hydrogen Storage Challenges -- 5.10 Hydrogen Energy Storage -- 5.10.1 Hydrogen Production -- 5.10.2 Hydrogen Re-electrification -- 5.11 Underground Hydrogen Storage -- 5.12 Materials-Based Hydrogen Storage -- 5.12.1 Technical Targets and Status -- 5.13 Industrial Application of Hydrogen Energy -- 5.14 Electrical Energy Storage -- 5.14.1 Characteristic of Electricity -- 5.14.2 Electricity and the Roles of Electrical Energy Storages -- 5.15 Strategic Asset Management of Power Networks -- 5.16 Orchestrating Infrastructure for Sustainable Smart Cities -- 5.16.1 Smart Technology Solution Create Value -- 5.16.2 New Approach to Smart City Solution -- 5.16.3 Stakeholders Are Key Drivers to Smart City Solution -- 5.16.4 Without Integration Rising to the Level of Systems There Cannot Smart City -- 5.16.5 Horizontal and Vertical Integration a Key to Interoperability -- 5.16.6 Interoperability Is the Key to Open Markets and to Competitive Solutions -- 5.16.7 Guiding Principles and Strategic Orientation -- References -- Chapter 6: Energy Storage for Peak Power and Increased Revenue -- 6.1 Introduction -- 6.2 Variable Electricity and Heat Storage.

6.3 Implications of Low-Carbon Grid and Renewables on Electricity Markets -- 6.4 Strategies for a Zero-Carbon Electricity Grid -- 6.5 Nuclear Air-Brayton Combined Cycle Strategies for Zero-Carbon Grid -- 6.6 Salt-Cooled Reactors Coupled to NACC Power System -- 6.7 Sodium-Cooled Reactors Coupled to NACC Power System -- 6.8 Power Cycle Comparisons -- 6.9 Summary -- References -- Chapter 7: Fission Nuclear Power Plants for Renewable Energy Source -- 7.1 Introduction -- 7.2 Electricity Markets -- 7.2.1 Global Electricity Consumption Set to Explode -- 7.2.1.1 Market Drivers -- 7.2.1.2 Market Restraints -- 7.2.1.3 Market Issues -- 7.2.1.4 Challenges -- 7.3 California and Others Are Getting It Wrong -- 7.4 Outlook for Power Generation -- 7.5 Why We Need Nuclear Power Plants -- 7.6 Is Nuclear Energy Renewable Source of Energy -- 7.6.1 Argument for Nuclear as Renewable Energy -- 7.6.2 Argument for Nuclear as Renewable Energy -- 7.6.3 Conclusion -- References -- Chapter 8: Energy Storage Technologies and Their Role in Renewable Integration -- 8.1 Introduction -- 8.2 The Electric Grid -- 8.3 Power Generation -- 8.4 Transmission and Distribution -- 8.5 Load Management -- 8.6 Types of Storage Technology -- 8.6.1 Kinetic Energy Storage or Flywheel Concept -- 8.6.2 Superconducting Magnetic Energy Storage -- 8.6.3 Batteries -- 8.6.3.1 Lead-Acid Batteries -- 8.6.3.2 Lithium-Ion Batteries -- 8.6.4 Other and Future Batteries in Development -- 8.7 A Battery-Inspired Strategy for Carbon Fixation -- 8.8 Saliva-Powered Battery -- 8.9 Summary -- References -- Appendix A: Global Energy Interconnection -- Introduction -- Global Energy Challenges -- Energy Security -- Climate Change -- Environmental Pollution -- Appendix B: Grid Integration of Large Capacity -- Introduction -- Expanding Energy Access -- Decarbonization.

Appendix C: Energy Storage for Power Grids and Electric Transportation -- Introduction -- Energy Stage Technology -- Energy Storage for Electric Grid Applications -- High-Power/Rapid Discharge Applications -- Energy Management Applications -- Energy Storage for Transportation Applications -- Appendix D: Coping with the Energy Challenge -- Introduction -- Index.

Description based on publisher supplied metadata and other sources.

There are no comments on this title.

to post a comment.