Normal view MARC view ISBD view

Engineering thermodynamics with worked examples / Nihal E. Wijeysundera.

By: Wijeysundera, Nihal E.
Material type: TextTextPublisher: Singapore ; World Scientific, [2011]Copyright date: ©2011Distributor: London Description: xiv, 708 pages : illustrations ; 23 cm.Content type: text Media type: unmediated Carrier type: volumeISBN: 9789814293136 (hbk.); 981429313X (hbk.); 9814293148 (pbk.); 9789814293143 (pbk.).Subject(s): Thermodynamics | Thermodynamics -- Problems, exercises, etc | Mechanical engineering | Mechanical engineering -- Problems, exercises, etcDDC classification: 621.4021
Contents:
Thermodynamic Systems and Properties -- Thermodynamics -- Systems and Surroundings -- Closed-system or control-mass -- Open-system or control-volume -- Isolated system -- Properties of a System -- Intensive properties -- Extensive properties -- State of System -- Some Basic Properties of Systems -- Pressure -- Temperature -- Temperature scales -- Density and specific volume -- Macroscopic and Microscopic View Points -- Thermodynamic Equilibrium -- Quasi-equilibrium and non-equilibrium processes -- Temperature Measurement and the Zeroth-Law -- The Zeroth-law of thermodynamics -- Worked Examples -- Problems -- References -- Properties of Pure Substances -- The Pure Substance -- Phase Equilibrium in a Pure Substance.
Phase Diagrams -- Independent Properties -- Tables and Charts of Property Data: Equation of State -- Ideal-Gas Equation of State -- Microscopic View Point -- Gas Laws -- Van der Waals Equation of State -- Worked Examples -- Problems -- References -- Work and Heat Interactions -- Concept of Work in Mechanics -- Work Interactions in Thermodynamics -- Criterion for a work interaction -- Work Done at a Moving Boundary -- Pressure-volume diagram -- Path dependence of work done -- Work Done in Extending a Solid Rod -- Work Done in Stretching a Liquid Surface -- Systems Involving Electrical Work -- Systems Involving Magnetic Work -- Heat Interactions -- Comparison of Heat and Work -- Worked Examples -- Problems -- References -- The First Law of Thermodynamics -- First Law for a Cyclic Process -- First Law for a Change of State.
An uncoupled-system -- A coupled-system -- Internal Energy -- A Thermodynamic Property -- State Postulate -- Internal Energy and Heat Capacities -- Heat capacity at constant volume -- Enthalpy -- Heat capacity at constant pressure -- Properties of Ideal Gases -- Internal energy, enthalpy and heat capacities of an ideal gas -- Heat capacities and kinetic theory -- Temperature Dependence of Heat Capacity -- Internal Energy and Enthalpy of a Pure Substance -- Worked Examples -- Problems -- References -- First Law Analysis of Open Systems -- Open Systems: An Example -- General Form of First Law for Control Volumes -- Mass Conservation Law for Control Volumes -- Steady-Flow Energy Equation (SFEE) -- Fluid Mass Flow Rate in a Duct -- Some Steady-Flow Devices -- Nozzles and diffusers -- Turbines and compressors -- Mixing chambers and heat exchangers.
Analysis of a Transient Filling Process -- Worked Examples -- Problems -- References -- The Second Law of Thermodynamics -- The Heat Engine Cycle -- Efficiency of a heat engine cycle -- The Reversed Heat Engine Cycle -- Coefficient of performance of a reversed heat engine cycle -- The Second Law of Thermodynamics -- Equivalence of the Kelvin-Planck and Clausius statements -- Reversible and Irreversible Processes -- Types of irreversible processes -- Reversible heat engines and thermal reservoirs -- Some Consequences of the Second Law -- Efficiency of a Carnot cycle using an ideal gas -- Thermodynamic temperature scale -- Cycles interacting with a single thermal reservoir -- Cycles interacting with two thermal reservoirs -- Cycles interacting with any number of thermal reservoirs -- Worked Examples -- Problems -- References -- Entropy -- The Clausius Inequality and Entropy.
The Carnot Cycle Using a Vapor -- The Rankine Cycle -- Temperature-entropy and enthalpy-entropy diagrams -- Analysis of the Rankine cycle -- The Reheat Cycle -- Analysis of the reheat cycle -- The Regenerative Power Cycle -- Analysis of the regenerative cycle with open-feed-heaters -- Closed-feed-heaters -- The Choice of Working Fluid -- Binary vapor cycle -- Analysis of the binary vapor cycle -- Supercritical vapor power cycle -- Combined-Heat and Power (CHP) Cycles -- Deviations Between Actual and Ideal Cycles -- Simplified Second Law Analysis of Power Cycles -- Worked Examples -- Problems -- References -- Gas Power Cycles -- Internal-Combustion Engine Cycles -- Spark-ignition (SI) engines -- Compression-ignition (CI) engines -- Air Standard Cycles -- Analysis of the Otto cycle -- Analysis of the Diesel cycle.
The dual cycle -- Gas Turbine Engine Cycles -- Analysis of the Brayton cycle -- Gas turbine cycle with regeneration -- Analysis of the ideal regeneration cycle -- Gas Turbine Cycles with Intercooling and Reheating -- Staged-compression with intercooling -- Multi-staged expansion with reheating -- The Ericsson cycle -- Air-Standard Cycles for Jet propulsion -- Idealizations in Air-Standard Cycles -- Worked Examples -- Problems -- References -- Refrigeration Cycles -- The Reversed-Carnot Cycle Using a Vapor -- The Vapor Compression Cycle -- Analysis of the vapor compression cycle -- Actual vapor compression cycle -- Modifications to the Vapor Compression Cycle -- Two-stage compression with flash inter-cooling -- Two-stage compression with two evaporators -- Refrigerants for Vapor Compression Systems.
The Vapor Absorption Cycle -- The three-heat-reservoir model -- Analysis of the actual absorption cycle -- Equilibrium of water-LiBr mixtures -- The Air-Standard Refrigeration Cycle -- The air-standard refrigeration cycle with a heat exchanger -- Worked Examples -- Problems -- References -- Gas and Gas-Vapor Mixtures -- Mixtures of Gases -- Mass-fraction and mole-fraction -- Partial pressure and partial volume -- Dalton's rule for ideal gas mixtures -- Amagat-Leduc rule for ideal gas mixtures -- Properties of ideal gas mixtures -- Real gas mixtures -- Mixtures of Ideal Gases and Vapors -- Mixtures of air and water vapor -- Relative humidity and humidity ratio -- The psychrometric chart -- Adiabatic saturation and wet-bulb temperature -- Processes of Air-Vapor Mixtures -- Cooling, dehumidification and heating.
Evaporative cooling -- Cooling towers -- Worked Examples -- Problems -- References -- Reactive Mixtures -- Chemical Reactions of Fuels -- Mass balance for a combustion reaction -- Energy Balance for a Combustion Process -- Enthalpy and internal energy of formation -- Internal energy and enthalpy of reactants and products -- Heats of reactions and heating values -- Adiabatic flame temperature -- Second Law Analysis of Combustion Processes -- Chemical Equilibrium -- Reactions in ideal-gas mixtures -- Dissociation -- Worked Examples -- Problems -- References.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Call number Status Date due Barcode
Book University of Texas At Tyler
Stacks - 3rd Floor
TJ265 .W46 2011 (Browse shelf) Available 0000002139806

Includes bibliographical references and index.

Machine generated contents note: chapter 1 Thermodynamic Systems and Properties -- 1.1. Thermodynamics -- 1.2. Systems and Surroundings -- 1.2.1. Closed-system or control-mass -- 1.2.2. Open-system or control-volume -- 1.2.3. Isolated system -- 1.3. Properties of a System -- 1.3.1. Intensive properties -- 1.3.2. Extensive properties -- 1.4. State of System -- 1.5. Some Basic Properties of Systems -- 1.5.1. Pressure -- 1.5.2. Temperature -- 1.5.3. Temperature scales -- 1.5.4. Density and specific volume -- 1.6. Macroscopic and Microscopic View Points -- 1.7. Thermodynamic Equilibrium -- 1.7.1. Quasi-equilibrium and non-equilibrium processes -- 1.8. Temperature Measurement and the Zeroth-Law -- 1.8.1. The Zeroth-law of thermodynamics -- 1.9. Worked Examples -- Problems -- References -- chapter 2 Properties of Pure Substances -- 2.1. The Pure Substance -- 2.2. Phase Equilibrium in a Pure Substance.

2.3. Phase Diagrams -- 2.4. Independent Properties -- 2.5. Tables and Charts of Property Data: Equation of State -- 2.6. Ideal-Gas Equation of State -- 2.7. Microscopic View Point -- 2.8. Gas Laws -- 2.9. Van der Waals Equation of State -- 2.10. Worked Examples -- Problems -- References -- chapter 3 Work and Heat Interactions -- 3.1. Concept of Work in Mechanics -- 3.2. Work Interactions in Thermodynamics -- 3.2.1. Criterion for a work interaction -- 3.3. Work Done at a Moving Boundary -- 3.3.1. Pressure-volume diagram -- 3.3.2. Path dependence of work done -- 3.4. Work Done in Extending a Solid Rod -- 3.5. Work Done in Stretching a Liquid Surface -- 3.6. Systems Involving Electrical Work -- 3.7. Systems Involving Magnetic Work -- 3.8. Heat Interactions -- 3.9. Comparison of Heat and Work -- 3.10. Worked Examples -- Problems -- References -- chapter 4 The First Law of Thermodynamics -- 4.1. First Law for a Cyclic Process -- 4.2. First Law for a Change of State.

4.2.1. An uncoupled-system -- 4.2.2. A coupled-system -- 4.3. Internal Energy -- A Thermodynamic Property -- 4.4. State Postulate -- 4.5. Internal Energy and Heat Capacities -- 4.5.1. Heat capacity at constant volume -- 4.5.2. Enthalpy -- 4.5.3. Heat capacity at constant pressure -- 4.6. Properties of Ideal Gases -- 4.6.1. Internal energy, enthalpy and heat capacities of an ideal gas -- 4.6.2. Heat capacities and kinetic theory -- 4.7. Temperature Dependence of Heat Capacity -- 4.8. Internal Energy and Enthalpy of a Pure Substance -- 4.9. Worked Examples -- Problems -- References -- chapter 5 First Law Analysis of Open Systems -- 5.1. Open Systems: An Example -- 5.2. General Form of First Law for Control Volumes -- 5.3. Mass Conservation Law for Control Volumes -- 5.4. Steady-Flow Energy Equation (SFEE) -- 5.5. Fluid Mass Flow Rate in a Duct -- 5.6. Some Steady-Flow Devices -- 5.6.1. Nozzles and diffusers -- 5.6.2. Turbines and compressors -- 5.6.3. Mixing chambers and heat exchangers.

5.7. Analysis of a Transient Filling Process -- 5.8. Worked Examples -- Problems -- References -- chapter 6 The Second Law of Thermodynamics -- 6.1. The Heat Engine Cycle -- 6.1.1. Efficiency of a heat engine cycle -- 6.2. The Reversed Heat Engine Cycle -- 6.2.1. Coefficient of performance of a reversed heat engine cycle -- 6.3. The Second Law of Thermodynamics -- 6.3.1. Equivalence of the Kelvin-Planck and Clausius statements -- 6.4. Reversible and Irreversible Processes -- 6.4.1. Types of irreversible processes -- 6.4.2. Reversible heat engines and thermal reservoirs -- 6.5. Some Consequences of the Second Law -- 6.5.1. Efficiency of a Carnot cycle using an ideal gas -- 6.5.2. Thermodynamic temperature scale -- 6.5.3. Cycles interacting with a single thermal reservoir -- 6.5.4. Cycles interacting with two thermal reservoirs -- 6.5.5. Cycles interacting with any number of thermal reservoirs -- 6.6. Worked Examples -- Problems -- References -- chapter 7 Entropy -- 7.1. The Clausius Inequality and Entropy.

9.1. The Carnot Cycle Using a Vapor -- 9.2. The Rankine Cycle -- 9.2.1. Temperature-entropy and enthalpy-entropy diagrams -- 9.2.2. Analysis of the Rankine cycle -- 9.3. The Reheat Cycle -- 9.3.1. Analysis of the reheat cycle -- 9.4. The Regenerative Power Cycle -- 9.4.1. Analysis of the regenerative cycle with open-feed-heaters -- 9.4.2. Closed-feed-heaters -- 9.5. The Choice of Working Fluid -- 9.5.1. Binary vapor cycle -- 9.5.2. Analysis of the binary vapor cycle -- 9.5.3. Supercritical vapor power cycle -- 9.6. Combined-Heat and Power (CHP) Cycles -- 9.7. Deviations Between Actual and Ideal Cycles -- 9.8. Simplified Second Law Analysis of Power Cycles -- 9.9. Worked Examples -- Problems -- References -- chapter 10 Gas Power Cycles -- 10.1. Internal-Combustion Engine Cycles -- 10.1.1. Spark-ignition (SI) engines -- 10.1.2. Compression-ignition (CI) engines -- 10.2. Air Standard Cycles -- 10.2.1. Analysis of the Otto cycle -- 10.2.2. Analysis of the Diesel cycle.

10.2.3. The dual cycle -- 10.3. Gas Turbine Engine Cycles -- 10.3.1. Analysis of the Brayton cycle -- 10.3.2. Gas turbine cycle with regeneration -- 10.3.3. Analysis of the ideal regeneration cycle -- 10.4. Gas Turbine Cycles with Intercooling and Reheating -- 10.4.1. Staged-compression with intercooling -- 10.4.2. Multi-staged expansion with reheating -- 10.4.3. The Ericsson cycle -- 10.5. Air-Standard Cycles for Jet propulsion -- 10.6. Idealizations in Air-Standard Cycles -- 10.7. Worked Examples -- Problems -- References -- chapter 11 Refrigeration Cycles -- 11.1. The Reversed-Carnot Cycle Using a Vapor -- 11.2. The Vapor Compression Cycle -- 11.2.1. Analysis of the vapor compression cycle -- 11.2.2. Actual vapor compression cycle -- 11.3. Modifications to the Vapor Compression Cycle -- 11.3.1. Two-stage compression with flash inter-cooling -- 11.3.2. Two-stage compression with two evaporators -- 11.4. Refrigerants for Vapor Compression Systems.

11.5. The Vapor Absorption Cycle -- 11.5.1. The three-heat-reservoir model -- 11.5.2. Analysis of the actual absorption cycle -- 11.5.3. Equilibrium of water-LiBr mixtures -- 11.6. The Air-Standard Refrigeration Cycle -- 11.6.1. The air-standard refrigeration cycle with a heat exchanger -- 11.7. Worked Examples -- Problems -- References -- chapter 12 Gas and Gas-Vapor Mixtures -- 12.1. Mixtures of Gases -- 12.1.1. Mass-fraction and mole-fraction -- 12.1.2. Partial pressure and partial volume -- 12.1.3. Dalton's rule for ideal gas mixtures -- 12.1.4. Amagat-Leduc rule for ideal gas mixtures -- 12.1.5. Properties of ideal gas mixtures -- 12.1.6. Real gas mixtures -- 12.2. Mixtures of Ideal Gases and Vapors -- 12.2.1. Mixtures of air and water vapor -- 12.2.2. Relative humidity and humidity ratio -- 12.2.3. The psychrometric chart -- 12.2.4. Adiabatic saturation and wet-bulb temperature -- 12.3. Processes of Air-Vapor Mixtures -- 12.3.1. Cooling, dehumidification and heating.

12.3.2. Evaporative cooling -- 12.3.3. Cooling towers -- 12.4. Worked Examples -- Problems -- References -- chapter 13 Reactive Mixtures -- 13.1. Chemical Reactions of Fuels -- 13.1.1. Mass balance for a combustion reaction -- 13.2. Energy Balance for a Combustion Process -- 13.2.1. Enthalpy and internal energy of formation -- 13.2.2. Internal energy and enthalpy of reactants and products -- 13.2.3. Heats of reactions and heating values -- 13.2.4. Adiabatic flame temperature -- 13.3. Second Law Analysis of Combustion Processes -- 13.4. Chemical Equilibrium -- 13.4.1. Reactions in ideal-gas mixtures -- 13.4.2. Dissociation -- 13.5. Worked Examples -- Problems -- References.

There are no comments for this item.

Log in to your account to post a comment.