Normal view MARC view ISBD view

New Techniques in Digital Holography.

By: Picart, Pascal.
Material type: TextTextSeries: eBooks on Demand.Publisher: Somerset : Wiley, 2015Description: 1 online resource (320 p.).ISBN: 9781119091837.Subject(s): Holography -- Data processing | Holography -- Mathematics | Image processing -- Digital techniquesGenre/Form: Electronic books.Additional physical formats: Print version:: New Techniques in Digital HolographyDDC classification: 621.36750285 Online resources: Click here to view this ebook.
Contents:
Cover -- Title Page -- Copyright -- Content -- Introduction -- I.1. Bibliography -- 1: Basic Fundamentals of Digital Holography -- 1.1. Digital holograms -- 1.1.1. Interferences between the object and reference waves -- 1.1.2. Role of the image sensor -- 1.1.2.1. Spatial sampling and Shannon conditions -- 1.1.2.2. Low-pass filtering -- 1.1.2.3. Effect of the exposure time -- 1.1.2.4. Recording digital color holograms -- 1.1.3. Demodulation of digital holograms -- 1.1.3.1. Off-axis holograms -- 1.1.3.2. Phase-shifting digital holography -- 1.1.3.3. Parallel phase-shifting
1.1.3.4. Heterodyne digital holography -- 1.2. Back-propagation to the object plane -- 1.2.1. Monochromatic spherical and plane waves -- 1.2.2. Propagation equation -- 1.2.3. Angular spectrum transfer function -- 1.2.4. Kirchhoff and Rayleigh-Sommerfeld formulas -- 1.2.5. Fresnel approximation and Fresnel diffraction integral -- 1.3. Numerical reconstruction of digital holograms -- 1.3.1. Discrete Fresnel transform -- 1.3.1.1. Algorithm -- 1.3.1.2. Spatial resolution in the reconstructed plane -- 1.3.1.3. Effect of defocus and depth of focus -- 1.3.1.4. Effect of zero-padding
1.3.2. Reconstruction with convolution -- 1.3.2.1. Basic algorithm -- 1.3.2.2. Limits of classical approaches of convolution -- 1.3.2.3. Zero-padding of the impulse response -- 1.3.2.4. Adjustable magnification -- 1.4. Holographic setups -- 1.4.1. Fresnel holography -- 1.4.2. Fresnel holography with spatial spectrum reduction -- 1.4.3. Fourier holography -- 1.4.4. Lensless Fourier holography -- 1.4.5. Image-plane holography -- 1.4.6. Holographic microscopy -- 1.4.7. In-line Gabor holography -- 1.5. Digital holographic interferometry -- 1.5.1. Reconstruction of the phase of the object
1.5.2. Optical phase variations and the sensitivity vector -- 1.5.3. Phase difference method -- 1.5.4. Phase unwrapping -- 1.6. Quantitative phase tomography -- 1.7. Conclusion -- 1.8. Bibliography -- 2: Digital In-line Holography Applied to Fluid Flows -- 2.1. Examples of measurements in flows -- 2.1.1. Increasing NA with a divergent wave -- 2.1.2. Choice of the magnification -- 2.1.3. 3D velocity measurements in a turbulent boundary layer -- 2.1.3.1. Recording holograms through a window-reticle -- 2.1.3.2. Error estimations -- 2.1.3.3. Velocity measurements
2.1.4. Cavitation bubbles measurements -- 2.1.4.1. Experimental setup -- 2.1.4.2. Bubble measurements -- 2.1.4.3. Experimental results -- 2.2. The fractional-order Fourier transform -- 2.3. Digital in-line holography with a sub-picosecond laser beam -- 2.4. Spatially partially coherent source applied to the digital in-line holography -- 2.5. Digital in-line holography for phase objects metrology -- 2.5.1. In-line holograms of transparent phase objects -- 2.5.1.1. CW regime -- 2.5.1.2. General theory for complex setup -- 2.5.1.3. Ultrashort pulse illumination -- 2.5.2. Reconstruction
2.5.3. Experimental results
Summary: A state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holography
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Call number URL Status Date due Barcode
Electronic Book UT Tyler Online
Online
QC449 .P384 2015 (Browse shelf) http://uttyler.eblib.com/patron/FullRecord.aspx?p=1895392 Available EBL1895392

Cover -- Title Page -- Copyright -- Content -- Introduction -- I.1. Bibliography -- 1: Basic Fundamentals of Digital Holography -- 1.1. Digital holograms -- 1.1.1. Interferences between the object and reference waves -- 1.1.2. Role of the image sensor -- 1.1.2.1. Spatial sampling and Shannon conditions -- 1.1.2.2. Low-pass filtering -- 1.1.2.3. Effect of the exposure time -- 1.1.2.4. Recording digital color holograms -- 1.1.3. Demodulation of digital holograms -- 1.1.3.1. Off-axis holograms -- 1.1.3.2. Phase-shifting digital holography -- 1.1.3.3. Parallel phase-shifting

1.1.3.4. Heterodyne digital holography -- 1.2. Back-propagation to the object plane -- 1.2.1. Monochromatic spherical and plane waves -- 1.2.2. Propagation equation -- 1.2.3. Angular spectrum transfer function -- 1.2.4. Kirchhoff and Rayleigh-Sommerfeld formulas -- 1.2.5. Fresnel approximation and Fresnel diffraction integral -- 1.3. Numerical reconstruction of digital holograms -- 1.3.1. Discrete Fresnel transform -- 1.3.1.1. Algorithm -- 1.3.1.2. Spatial resolution in the reconstructed plane -- 1.3.1.3. Effect of defocus and depth of focus -- 1.3.1.4. Effect of zero-padding

1.3.2. Reconstruction with convolution -- 1.3.2.1. Basic algorithm -- 1.3.2.2. Limits of classical approaches of convolution -- 1.3.2.3. Zero-padding of the impulse response -- 1.3.2.4. Adjustable magnification -- 1.4. Holographic setups -- 1.4.1. Fresnel holography -- 1.4.2. Fresnel holography with spatial spectrum reduction -- 1.4.3. Fourier holography -- 1.4.4. Lensless Fourier holography -- 1.4.5. Image-plane holography -- 1.4.6. Holographic microscopy -- 1.4.7. In-line Gabor holography -- 1.5. Digital holographic interferometry -- 1.5.1. Reconstruction of the phase of the object

1.5.2. Optical phase variations and the sensitivity vector -- 1.5.3. Phase difference method -- 1.5.4. Phase unwrapping -- 1.6. Quantitative phase tomography -- 1.7. Conclusion -- 1.8. Bibliography -- 2: Digital In-line Holography Applied to Fluid Flows -- 2.1. Examples of measurements in flows -- 2.1.1. Increasing NA with a divergent wave -- 2.1.2. Choice of the magnification -- 2.1.3. 3D velocity measurements in a turbulent boundary layer -- 2.1.3.1. Recording holograms through a window-reticle -- 2.1.3.2. Error estimations -- 2.1.3.3. Velocity measurements

2.1.4. Cavitation bubbles measurements -- 2.1.4.1. Experimental setup -- 2.1.4.2. Bubble measurements -- 2.1.4.3. Experimental results -- 2.2. The fractional-order Fourier transform -- 2.3. Digital in-line holography with a sub-picosecond laser beam -- 2.4. Spatially partially coherent source applied to the digital in-line holography -- 2.5. Digital in-line holography for phase objects metrology -- 2.5.1. In-line holograms of transparent phase objects -- 2.5.1.1. CW regime -- 2.5.1.2. General theory for complex setup -- 2.5.1.3. Ultrashort pulse illumination -- 2.5.2. Reconstruction

2.5.3. Experimental results

A state of the art presentation of important advances in the field of digital holography, detailing advances related to fundamentals of digital holography, in-line holography applied to fluid mechanics, digital color holography, digital holographic microscopy, infrared holography, special techniques in full field vibrometry and inverse problems in digital holography

Description based upon print version of record.

Author notes provided by Syndetics

<p> Pascal PICART , Professor at Université du Maine, Le Mans, France</p>

There are no comments for this item.

Log in to your account to post a comment.